Let X, Tx, Fam and U be given.
Assume H: open_cover_of X Tx Fam.
Assume HU: U Fam.
We prove the intermediate claim H0: ((topology_on X Tx Fam 𝒫 X) X Fam) (∀U0 : set, U0 FamU0 Tx).
An exact proof term for the current goal is H.
We prove the intermediate claim Hprop: ∀U0 : set, U0 FamU0 Tx.
An exact proof term for the current goal is (andER ((topology_on X Tx Fam 𝒫 X) X Fam) (∀U0 : set, U0 FamU0 Tx) H0).
An exact proof term for the current goal is (Hprop U HU).