Let X, Tx, U and u be given.
Assume Hcov: open_cover X Tx U.
Assume HuU: u U.
We prove the intermediate claim Hop: ∀u0 : set, u0 Uu0 Tx.
An exact proof term for the current goal is (andEL (∀u0 : set, u0 Uu0 Tx) (covers X U) Hcov).
An exact proof term for the current goal is (Hop u HuU).