Let x, r and y be given.
Assume HxR: x R.
Assume HrR: r R.
Assume Hrpos: Rlt 0 r.
Assume Hrlt1: Rlt r 1.
Assume HyB: y open_ball R R_bounded_metric x r.
We prove the intermediate claim Hpair: y R Rlt (R_bounded_distance x y) r.
An exact proof term for the current goal is (iffEL (y open_ball R R_bounded_metric x r) (y R Rlt (R_bounded_distance x y) r) (open_ball_R_bounded_metric_abs_early x r y HxR HrR Hrpos Hrlt1) HyB).
We prove the intermediate claim HyR: y R.
An exact proof term for the current goal is (andEL (y R) (Rlt (R_bounded_distance x y) r) Hpair).
We prove the intermediate claim Hbdlt: Rlt (R_bounded_distance x y) r.
An exact proof term for the current goal is (andER (y R) (Rlt (R_bounded_distance x y) r) Hpair).
An exact proof term for the current goal is (R_bounded_distance_lt_lt1_imp_abs_lt x y r HxR HyR HrR Hrlt1 Hbdlt).