Let X, Tx, A and U be given.
Assume Hnorm: normal_space X Tx.
Assume HAcl: closed_in X Tx A.
Assume HU: U Tx.
Assume HAU: A U.
We will prove ∃V : set, V Tx A V closure_of X Tx V U.
We prove the intermediate claim HT1: one_point_sets_closed X Tx.
An exact proof term for the current goal is (andEL (one_point_sets_closed X Tx) (∀A0 B0 : set, closed_in X Tx A0closed_in X Tx B0A0 B0 = Empty∃U0 V0 : set, U0 Tx V0 Tx A0 U0 B0 V0 U0 V0 = Empty) Hnorm).
We prove the intermediate claim HTx: topology_on X Tx.
An exact proof term for the current goal is (andEL (topology_on X Tx) (∀x0 : set, x0 Xclosed_in X Tx {x0}) HT1).
We prove the intermediate claim Hlemma: one_point_sets_closed X Tx(normal_space X Tx ∀A0 U0 : set, closed_in X Tx A0U0 TxA0 U0∃V0 : set, V0 Tx A0 V0 closure_of X Tx V0 U0).
An exact proof term for the current goal is (andER (one_point_sets_closed X Tx(regular_space X Tx ∀x0 U0 : set, x0 XU0 Txx0 U0∃V0 : set, V0 Tx x0 V0 closure_of X Tx V0 U0)) (one_point_sets_closed X Tx(normal_space X Tx ∀A0 U0 : set, closed_in X Tx A0U0 TxA0 U0∃V0 : set, V0 Tx A0 V0 closure_of X Tx V0 U0)) (regular_normal_via_closure X Tx HTx)).
We prove the intermediate claim Hiff: normal_space X Tx ∀A0 U0 : set, closed_in X Tx A0U0 TxA0 U0∃V0 : set, V0 Tx A0 V0 closure_of X Tx V0 U0.
An exact proof term for the current goal is (Hlemma HT1).
We prove the intermediate claim Hcrit: ∀A0 U0 : set, closed_in X Tx A0U0 TxA0 U0∃V0 : set, V0 Tx A0 V0 closure_of X Tx V0 U0.
An exact proof term for the current goal is (iffEL (normal_space X Tx) (∀A0 U0 : set, closed_in X Tx A0U0 TxA0 U0∃V0 : set, V0 Tx A0 V0 closure_of X Tx V0 U0) Hiff Hnorm).
An exact proof term for the current goal is (Hcrit A U HAcl HU HAU).