Let U and V be given.
We use
(U ∩ V) to
witness the existential quantifier.
We will
prove U ∩ V ∈ J ∧ (U,U ∩ V) ∈ le ∧ (V,U ∩ V) ∈ le.
We prove the intermediate
claim HUTx:
U ∈ Tx.
An
exact proof term for the current goal is
(SepE1 Tx (λU0 : set ⇒ x ∈ U0) U HUJ).
We prove the intermediate
claim HVTx:
V ∈ Tx.
An
exact proof term for the current goal is
(SepE1 Tx (λU0 : set ⇒ x ∈ U0) V HVJ).
We prove the intermediate
claim HxU:
x ∈ U.
An
exact proof term for the current goal is
(SepE2 Tx (λU0 : set ⇒ x ∈ U0) U HUJ).
We prove the intermediate
claim HxV:
x ∈ V.
An
exact proof term for the current goal is
(SepE2 Tx (λU0 : set ⇒ x ∈ U0) V HVJ).
We prove the intermediate
claim HWTx:
U ∩ V ∈ Tx.
We prove the intermediate
claim HxW:
x ∈ U ∩ V.
An
exact proof term for the current goal is
(binintersectI U V x HxU HxV).
We prove the intermediate
claim HWJ:
U ∩ V ∈ J.
An
exact proof term for the current goal is
(SepI Tx (λU0 : set ⇒ x ∈ U0) (U ∩ V) HWTx HxW).
Apply andI to the current goal.
Apply andI to the current goal.
An exact proof term for the current goal is HWJ.
∎