Let X, n, F, e, i and x be given.
Assume HnO: n ω.
Assume HiN: i n.
Assume HsiN: ordsucc i n.
Assume HxX: x X.
Assume Hbij: bijection n F e.
Assume HtermUI: ∀k : set, k napply_fun (apply_fun e k) x unit_interval.
We will prove bijection n F (swap_adjacent e i n) nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun (swap_adjacent e i n) k) x)) n = nat_primrec 0 (λk acc : setadd_SNo acc (apply_fun (apply_fun e k) x)) n.
Apply andI to the current goal.
An exact proof term for the current goal is (bijection_swap_adjacent F e i n HiN HsiN Hbij).
An exact proof term for the current goal is (nat_primrec_sum_swap_adjacent_unit_interval X n e i x HnO HiN HsiN HxX HtermUI).