Let X, d, x, y and z be given.
We prove the intermediate
claim HxyIn:
(x,y) ∈ setprod X X.
We prove the intermediate
claim HyzIn:
(y,z) ∈ setprod X X.
We prove the intermediate
claim HxzIn:
(x,z) ∈ setprod X X.
We prove the intermediate
claim HdxyR:
apply_fun d (x,y) ∈ R.
An exact proof term for the current goal is (Hfun (x,y) HxyIn).
We prove the intermediate
claim HdyzR:
apply_fun d (y,z) ∈ R.
An exact proof term for the current goal is (Hfun (y,z) HyzIn).
We prove the intermediate
claim HdxzR:
apply_fun d (x,z) ∈ R.
An exact proof term for the current goal is (Hfun (x,z) HxzIn).
∎