Let a and b be given.
Assume Hab.
We will prove order_rel (ω {0}) a b.
We will prove (ω {0} = R Rlt a b) (ω {0} = rational_numbers Rlt a b) (ω {0} = ω a b) (ω {0} = ω {0} a b) (ω {0} = setprod 2 ω ∃i m j n : set, i 2 m ω j 2 n ω a = (i,m) b = (j,n) (i j (i = j m n))) (ω {0} = setprod R R ∃a1 a2 b1 b2 : set, a = (a1,a2) b = (b1,b2) (Rlt a1 b1 (a1 = b1 Rlt a2 b2))) (ordinal (ω {0}) (ω {0}) R (ω {0}) rational_numbers (ω {0}) setprod 2 ω (ω {0}) setprod R R a b).
Apply orIL to the current goal.
Apply orIL to the current goal.
Apply orIL to the current goal.
Apply orIR to the current goal.
We will prove ω {0} = ω {0} a b.
Apply andI to the current goal.
Use reflexivity.
An exact proof term for the current goal is Hab.