Let X, Tx, W and x be given.
We prove the intermediate
claim HexN:
∃N : set, N ∈ Tx ∧ x ∈ N ∧ ∃S0 : set, finite S0 ∧ S0 ⊆ W ∧ ∀A : set, A ∈ W → A ∩ N ≠ Empty → A ∈ S0.
Apply HexN to the current goal.
Let N be given.
We prove the intermediate
claim HNpair:
N ∈ Tx ∧ x ∈ N.
An
exact proof term for the current goal is
(andEL (N ∈ Tx ∧ x ∈ N) (∃S0 : set, finite S0 ∧ S0 ⊆ W ∧ ∀A : set, A ∈ W → A ∩ N ≠ Empty → A ∈ S0) HNpack).
We prove the intermediate
claim HNTx:
N ∈ Tx.
An
exact proof term for the current goal is
(andEL (N ∈ Tx) (x ∈ N) HNpair).
We prove the intermediate
claim HxN:
x ∈ N.
An
exact proof term for the current goal is
(andER (N ∈ Tx) (x ∈ N) HNpair).
We prove the intermediate
claim HexS0:
∃S0 : set, finite S0 ∧ S0 ⊆ W ∧ ∀A : set, A ∈ W → A ∩ N ≠ Empty → A ∈ S0.
An
exact proof term for the current goal is
(andER (N ∈ Tx ∧ x ∈ N) (∃S0 : set, finite S0 ∧ S0 ⊆ W ∧ ∀A : set, A ∈ W → A ∩ N ≠ Empty → A ∈ S0) HNpack).
Apply HexS0 to the current goal.
Let S0 be given.
We use S0 to witness the existential quantifier.
Apply andI to the current goal.
Apply andI to the current goal.
Let w be given.
We prove the intermediate
claim HclCond:
∀U : set, U ∈ Tx → x ∈ U → U ∩ w ≠ Empty.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ ∀U : set, U ∈ Tx → x0 ∈ U → U ∩ w ≠ Empty) x Hxcl).
We prove the intermediate
claim HNw:
N ∩ w ≠ Empty.
An exact proof term for the current goal is (HclCond N HNTx HxN).
We prove the intermediate
claim HwN:
w ∩ N ≠ Empty.
An exact proof term for the current goal is HNw.
An
exact proof term for the current goal is
(andER (finite S0 ∧ S0 ⊆ W) (∀A : set, A ∈ W → A ∩ N ≠ Empty → A ∈ S0) HS0 w HwW HwN).
∎