Let X, Tx and F be given.
Let x be given.
We will
prove ∃S : set, finite S ∧ S ⊆ F ∧ ∀A : set, A ∈ F → x ∈ A → A ∈ S.
We prove the intermediate
claim HexN:
∃N : set, N ∈ Tx ∧ x ∈ N ∧ ∃S : set, finite S ∧ S ⊆ F ∧ ∀A : set, A ∈ F → A ∩ N ≠ Empty → A ∈ S.
Apply HexN to the current goal.
Let N be given.
We prove the intermediate
claim HNpair:
N ∈ Tx ∧ x ∈ N.
An
exact proof term for the current goal is
(andEL (N ∈ Tx ∧ x ∈ N) (∃S : set, finite S ∧ S ⊆ F ∧ ∀A : set, A ∈ F → A ∩ N ≠ Empty → A ∈ S) HN).
We prove the intermediate
claim HxN:
x ∈ N.
An
exact proof term for the current goal is
(andER (N ∈ Tx) (x ∈ N) HNpair).
We prove the intermediate
claim HexS:
∃S : set, finite S ∧ S ⊆ F ∧ ∀A : set, A ∈ F → A ∩ N ≠ Empty → A ∈ S.
An
exact proof term for the current goal is
(andER (N ∈ Tx ∧ x ∈ N) (∃S : set, finite S ∧ S ⊆ F ∧ ∀A : set, A ∈ F → A ∩ N ≠ Empty → A ∈ S) HN).
Apply HexS to the current goal.
Let S be given.
We use S to witness the existential quantifier.
Apply andI to the current goal.
An
exact proof term for the current goal is
(andEL (finite S ∧ S ⊆ F) (∀A : set, A ∈ F → A ∩ N ≠ Empty → A ∈ S) HS).
Let A be given.
We prove the intermediate
claim HxAN:
x ∈ A ∩ N.
An
exact proof term for the current goal is
(binintersectI A N x HxA HxN).
We prove the intermediate
claim HAnN:
A ∩ N ≠ Empty.
An
exact proof term for the current goal is
(andER (finite S ∧ S ⊆ F) (∀A0 : set, A0 ∈ F → A0 ∩ N ≠ Empty → A0 ∈ S) HS A HA HAnN).
∎