Let X, Tx and F be given.
Assume HLF: locally_finite_family X Tx F.
Let x be given.
Assume HxX: x X.
We will prove ∃S : set, finite S S F ∀A : set, A Fx AA S.
We prove the intermediate claim HexN: ∃N : set, N Tx x N ∃S : set, finite S S F ∀A : set, A FA N EmptyA S.
An exact proof term for the current goal is (andER (topology_on X Tx) (∀x0 : set, x0 X∃N : set, N Tx x0 N ∃S : set, finite S S F ∀A : set, A FA N EmptyA S) HLF x HxX).
Apply HexN to the current goal.
Let N be given.
Assume HN: N Tx x N ∃S : set, finite S S F ∀A : set, A FA N EmptyA S.
We prove the intermediate claim HNpair: N Tx x N.
An exact proof term for the current goal is (andEL (N Tx x N) (∃S : set, finite S S F ∀A : set, A FA N EmptyA S) HN).
We prove the intermediate claim HxN: x N.
An exact proof term for the current goal is (andER (N Tx) (x N) HNpair).
We prove the intermediate claim HexS: ∃S : set, finite S S F ∀A : set, A FA N EmptyA S.
An exact proof term for the current goal is (andER (N Tx x N) (∃S : set, finite S S F ∀A : set, A FA N EmptyA S) HN).
Apply HexS to the current goal.
Let S be given.
Assume HS: finite S S F ∀A : set, A FA N EmptyA S.
We use S to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is (andEL (finite S S F) (∀A : set, A FA N EmptyA S) HS).
Let A be given.
Assume HA: A F.
Assume HxA: x A.
We prove the intermediate claim HxAN: x A N.
An exact proof term for the current goal is (binintersectI A N x HxA HxN).
We prove the intermediate claim HAnN: A N Empty.
An exact proof term for the current goal is (elem_implies_nonempty (A N) x HxAN).
An exact proof term for the current goal is (andER (finite S S F) (∀A0 : set, A0 FA0 N EmptyA0 S) HS A HA HAnN).