Let X, Tx, F and x be given.
Set Fx to be the term
{A ∈ F|x ∈ A}.
We prove the intermediate
claim HLFx:
∃N : set, N ∈ Tx ∧ x ∈ N ∧ ∃S : set, finite S ∧ S ⊆ F ∧ ∀A : set, A ∈ F → A ∩ N ≠ Empty → A ∈ S.
Apply HLFx to the current goal.
Let N be given.
We prove the intermediate
claim HNcore:
N ∈ Tx ∧ x ∈ N.
An
exact proof term for the current goal is
(andEL (N ∈ Tx ∧ x ∈ N) (∃S : set, finite S ∧ S ⊆ F ∧ ∀A : set, A ∈ F → A ∩ N ≠ Empty → A ∈ S) HNpack).
We prove the intermediate
claim HxN:
x ∈ N.
An
exact proof term for the current goal is
(andER (N ∈ Tx) (x ∈ N) HNcore).
We prove the intermediate
claim HexS:
∃S : set, finite S ∧ S ⊆ F ∧ ∀A : set, A ∈ F → A ∩ N ≠ Empty → A ∈ S.
An
exact proof term for the current goal is
(andER (N ∈ Tx ∧ x ∈ N) (∃S : set, finite S ∧ S ⊆ F ∧ ∀A : set, A ∈ F → A ∩ N ≠ Empty → A ∈ S) HNpack).
Apply HexS to the current goal.
Let S be given.
We prove the intermediate
claim HSleft:
finite S ∧ S ⊆ F.
An
exact proof term for the current goal is
(andEL (finite S ∧ S ⊆ F) (∀A : set, A ∈ F → A ∩ N ≠ Empty → A ∈ S) HSpack).
We prove the intermediate
claim HSfin:
finite S.
An
exact proof term for the current goal is
(andEL (finite S) (S ⊆ F) HSleft).
We prove the intermediate
claim HSprop:
∀A : set, A ∈ F → A ∩ N ≠ Empty → A ∈ S.
An
exact proof term for the current goal is
(andER (finite S ∧ S ⊆ F) (∀A : set, A ∈ F → A ∩ N ≠ Empty → A ∈ S) HSpack).
We prove the intermediate
claim HFxSub:
Fx ⊆ S.
Let A be given.
We prove the intermediate
claim HAF:
A ∈ F.
An
exact proof term for the current goal is
(SepE1 F (λA0 : set ⇒ x ∈ A0) A HA).
We prove the intermediate
claim HxA:
x ∈ A.
An
exact proof term for the current goal is
(SepE2 F (λA0 : set ⇒ x ∈ A0) A HA).
We prove the intermediate
claim HxAN:
x ∈ A ∩ N.
An
exact proof term for the current goal is
(binintersectI A N x HxA HxN).
We prove the intermediate
claim HAnN:
A ∩ N ≠ Empty.
An exact proof term for the current goal is (HSprop A HAF HAnN).
An
exact proof term for the current goal is
(Subq_finite S HSfin Fx HFxSub).
∎