Let X, Tx, x and U be given.
Assume H: locally_connected X Tx.
Assume Hx: x X.
Assume HU: U Tx.
Assume HxU: x U.
We prove the intermediate claim Hprop: ∀x0 : set, x0 X∀U0 : set, U0 Txx0 U0∃V : set, V Tx x0 V V U0 connected_space V (subspace_topology X Tx V).
An exact proof term for the current goal is (andER (topology_on X Tx) (∀x0 : set, x0 X∀U0 : set, U0 Txx0 U0∃V : set, V Tx x0 V V U0 connected_space V (subspace_topology X Tx V)) H).
An exact proof term for the current goal is (Hprop x Hx U HU HxU).