Let X and Tx be given.
Assume Hlin: linear_continuum X Tx.
Set P to be the term simply_ordered_set X.
Set Q to be the term Tx = order_topology X.
Set R to be the term ∃x y : set, x X y X x y.
Set S to be the term ∀x y : set, x Xy Xorder_rel X x y∃z : set, z X order_rel X x z order_rel X z y.
Set T to be the term ∀A : set, A XA Empty(∃upper : set, upper X ∀a : set, a Aorder_rel X a upper a = upper)∃lub : set, lub X (∀a : set, a Aorder_rel X a lub a = lub) (∀bound : set, bound X(∀a : set, a Aorder_rel X a bound a = bound)order_rel X lub bound lub = bound).
We prove the intermediate claim H1: (((P Q) R) S).
An exact proof term for the current goal is (andEL (((P Q) R) S) T Hlin).
We prove the intermediate claim H2: ((P Q) R).
An exact proof term for the current goal is (andEL ((P Q) R) S H1).
We prove the intermediate claim HPQ: (P Q).
An exact proof term for the current goal is (andEL (P Q) R H2).
An exact proof term for the current goal is (andEL P Q HPQ).