Let X, T and UFam be given.
Assume HT Hfam.
We prove the intermediate claim Hchunk1: ((T 𝒫 X Empty T) X T) (∀UFam'𝒫 T, UFam' T).
An exact proof term for the current goal is (andEL (((T 𝒫 X Empty T) X T) (∀UFam'𝒫 T, UFam' T)) (∀UT, ∀VT, U V T) HT).
We prove the intermediate claim Hunion_axiom: ∀UFam'𝒫 T, UFam' T.
An exact proof term for the current goal is (andER ((T 𝒫 X Empty T) X T) (∀UFam'𝒫 T, UFam' T) Hchunk1).
An exact proof term for the current goal is (Hunion_axiom UFam Hfam).