Let X, B and B' be given.
Assume HBasis Href.
We prove the intermediate claim Hprop: ∀Ugenerated_topology X B, ∀xU, ∃b'B', x b' b' U.
An exact proof term for the current goal is (andER (topology_on X (generated_topology X B)) (∀Ugenerated_topology X B, ∀xU, ∃b'B', x b' b' U) Href).
We will prove generated_topology X B generated_topology X B'.
Let U be given.
Assume HU.
We prove the intermediate claim HUsubX: U X.
An exact proof term for the current goal is (PowerE X U (SepE1 (𝒫 X) (λU0 : set∀x0U0, ∃b0B, x0 b0 b0 U0) U HU)).
We prove the intermediate claim HUprop: ∀xU, ∃b'B', x b' b' U.
An exact proof term for the current goal is (Hprop U HU).
An exact proof term for the current goal is (SepI (𝒫 X) (λU0 : set∀x0U0, ∃b0B', x0 b0 b0 U0) U (PowerI X U HUsubX) HUprop).