Let X, B and B' be given.
Assume HBasis Href.
Let U be given.
Assume HU.
We prove the intermediate
claim HUsubX:
U ⊆ X.
An
exact proof term for the current goal is
(PowerE X U (SepE1 (𝒫 X) (λU0 : set ⇒ ∀x0 ∈ U0, ∃b0 ∈ B, x0 ∈ b0 ∧ b0 ⊆ U0) U HU)).
We prove the intermediate
claim HUprop:
∀x ∈ U, ∃b' ∈ B', x ∈ b' ∧ b' ⊆ U.
An exact proof term for the current goal is (Hprop U HU).
An
exact proof term for the current goal is
(SepI (𝒫 X) (λU0 : set ⇒ ∀x0 ∈ U0, ∃b0 ∈ B', x0 ∈ b0 ∧ b0 ⊆ U0) U (PowerI X U HUsubX) HUprop).
∎