Let F be given.
Let A and B be given.
Assume HA.
Assume HB.
We prove the intermediate
claim Hall:
∀F0 : set, finite F0 → (F0 ⊆ X → closed_in X Tx F0).
An
exact proof term for the current goal is
(finite_ind (λF0 : set ⇒ F0 ⊆ X → closed_in X Tx F0) (λ_ ⇒ Hclosed_empty) (λF0 y : set ⇒ λHFin0 HyNotin IH ⇒ λHsubUnion ⇒ Hclosed_union F0 {y} (IH (λz Hz ⇒ HsubUnion z (binunionI1 F0 {y} z Hz))) (Hsing y (HsubUnion y (binunionI2 F0 {y} y (SingI y)))))).
We prove the intermediate
claim Hspec:
F ⊆ X → closed_in X Tx F.
An exact proof term for the current goal is (Hall F HF).
An exact proof term for the current goal is (Hspec HFsub).