Let X, Tx, A and B be given.
Assume Htop: topology_on X Tx.
Assume HA: A X.
Assume HB: B X.
We will prove interior_of X Tx A interior_of X Tx B interior_of X Tx (A B).
We prove the intermediate claim HAB_union_A: A A B.
Let x be given.
Assume Hx: x A.
An exact proof term for the current goal is (binunionI1 A B x Hx).
We prove the intermediate claim HAB_union_B: B A B.
Let x be given.
Assume Hx: x B.
An exact proof term for the current goal is (binunionI2 A B x Hx).
We prove the intermediate claim HAB_sub: A B X.
Let x be given.
Assume Hx: x A B.
Apply (binunionE A B x Hx) to the current goal.
Assume HxA: x A.
An exact proof term for the current goal is (HA x HxA).
Assume HxB: x B.
An exact proof term for the current goal is (HB x HxB).
We prove the intermediate claim HintA: interior_of X Tx A interior_of X Tx (A B).
An exact proof term for the current goal is (interior_monotone X Tx A (A B) Htop HAB_union_A).
We prove the intermediate claim HintB: interior_of X Tx B interior_of X Tx (A B).
An exact proof term for the current goal is (interior_monotone X Tx B (A B) Htop HAB_union_B).
Let x be given.
Assume Hx: x interior_of X Tx A interior_of X Tx B.
Apply (binunionE (interior_of X Tx A) (interior_of X Tx B) x Hx) to the current goal.
Assume HxA: x interior_of X Tx A.
An exact proof term for the current goal is (HintA x HxA).
Assume HxB: x interior_of X Tx B.
An exact proof term for the current goal is (HintB x HxB).