Let X, Tx and A be given.
Assume Htop: topology_on X Tx.
We will prove interior_of X Tx A A.
Let x be given.
Assume Hx: x interior_of X Tx A.
We will prove x A.
We prove the intermediate claim Hexists: ∃U : set, U Tx x U U A.
An exact proof term for the current goal is (SepE2 X (λx0 ⇒ ∃U : set, U Tx x0 U U A) x Hx).
Apply Hexists to the current goal.
Let U be given.
Assume HU_conj: U Tx x U U A.
We prove the intermediate claim HU_and_x: U Tx x U.
An exact proof term for the current goal is (andEL (U Tx x U) (U A) HU_conj).
We prove the intermediate claim HUsub: U A.
An exact proof term for the current goal is (andER (U Tx x U) (U A) HU_conj).
We prove the intermediate claim HxU: x U.
An exact proof term for the current goal is (andER (U Tx) (x U) HU_and_x).
An exact proof term for the current goal is (HUsub x HxU).