Let X, Tx and A be given.
Assume Htop: topology_on X Tx.
Assume HA: A X.
We will prove interior_of X Tx (interior_of X Tx A) = interior_of X Tx A.
We prove the intermediate claim HintA_open: interior_of X Tx A Tx.
An exact proof term for the current goal is (interior_is_open X Tx A Htop HA).
An exact proof term for the current goal is (open_interior_eq X Tx (interior_of X Tx A) Htop HintA_open).