Let a and b be given.
Assume HaR: a R.
Assume HbR: b R.
We will prove halfopen_interval_left a b R_lower_limit_topology.
We prove the intermediate claim HbFam: halfopen_interval_left a b {halfopen_interval_left a bb|bbR}.
An exact proof term for the current goal is (ReplI R (λbb : sethalfopen_interval_left a bb) b HbR).
We prove the intermediate claim HbBasis: halfopen_interval_left a b R_lower_limit_basis.
An exact proof term for the current goal is (famunionI R (λaa : set{halfopen_interval_left aa bb|bbR}) a (halfopen_interval_left a b) HaR HbFam).
An exact proof term for the current goal is (generated_topology_contains_basis R R_lower_limit_basis R_lower_limit_basis_is_basis_local (halfopen_interval_left a b) HbBasis).