Let a and b be given.
Assume HaR: a R.
Assume HbR: b R.
Apply set_ext to the current goal.
Let x be given.
Assume Hx: x R halfopen_interval_left a b.
We will prove x {x0R|Rlt x0 a} {x0R|¬ (Rlt x0 b)}.
We prove the intermediate claim Hpair: x R x halfopen_interval_left a b.
An exact proof term for the current goal is (setminusE R (halfopen_interval_left a b) x Hx).
We prove the intermediate claim HxR: x R.
An exact proof term for the current goal is (andEL (x R) (x halfopen_interval_left a b) Hpair).
We prove the intermediate claim HxNotI: x halfopen_interval_left a b.
An exact proof term for the current goal is (andER (x R) (x halfopen_interval_left a b) Hpair).
Apply (xm (Rlt x a)) to the current goal.
Assume Hxa: Rlt x a.
Apply binunionI1 to the current goal.
An exact proof term for the current goal is (SepI R (λx0 : setRlt x0 a) x HxR Hxa).
Assume Hnxa: ¬ (Rlt x a).
Apply (xm (Rlt x b)) to the current goal.
Assume Hxb: Rlt x b.
We prove the intermediate claim HxinI: x halfopen_interval_left a b.
An exact proof term for the current goal is (SepI R (λx0 : set¬ (Rlt x0 a) Rlt x0 b) x HxR (andI (¬ (Rlt x a)) (Rlt x b) Hnxa Hxb)).
Apply FalseE to the current goal.
An exact proof term for the current goal is (HxNotI HxinI).
Assume Hnxb: ¬ (Rlt x b).
Apply binunionI2 to the current goal.
An exact proof term for the current goal is (SepI R (λx0 : set¬ (Rlt x0 b)) x HxR Hnxb).
Let x be given.
Assume Hx: x {x0R|Rlt x0 a} {x0R|¬ (Rlt x0 b)}.
We will prove x R halfopen_interval_left a b.
Apply (binunionE {x0R|Rlt x0 a} {x0R|¬ (Rlt x0 b)} x Hx) to the current goal.
Assume HxL: x {x0R|Rlt x0 a}.
We prove the intermediate claim HxR: x R.
An exact proof term for the current goal is (SepE1 R (λx0 : setRlt x0 a) x HxL).
We prove the intermediate claim Hxa: Rlt x a.
An exact proof term for the current goal is (SepE2 R (λx0 : setRlt x0 a) x HxL).
We will prove x R halfopen_interval_left a b.
Apply (setminusI R (halfopen_interval_left a b) x HxR) to the current goal.
Assume HxinI: x halfopen_interval_left a b.
We prove the intermediate claim Hprop: ¬ (Rlt x a) Rlt x b.
An exact proof term for the current goal is (SepE2 R (λx0 : set¬ (Rlt x0 a) Rlt x0 b) x HxinI).
We prove the intermediate claim Hnxa: ¬ (Rlt x a).
An exact proof term for the current goal is (andEL (¬ (Rlt x a)) (Rlt x b) Hprop).
An exact proof term for the current goal is (Hnxa Hxa).
Assume HxRr: x {x0R|¬ (Rlt x0 b)}.
We prove the intermediate claim HxR: x R.
An exact proof term for the current goal is (SepE1 R (λx0 : set¬ (Rlt x0 b)) x HxRr).
We prove the intermediate claim Hnxb: ¬ (Rlt x b).
An exact proof term for the current goal is (SepE2 R (λx0 : set¬ (Rlt x0 b)) x HxRr).
We will prove x R halfopen_interval_left a b.
Apply (setminusI R (halfopen_interval_left a b) x HxR) to the current goal.
Assume HxinI: x halfopen_interval_left a b.
We prove the intermediate claim Hprop: ¬ (Rlt x a) Rlt x b.
An exact proof term for the current goal is (SepE2 R (λx0 : set¬ (Rlt x0 a) Rlt x0 b) x HxinI).
We prove the intermediate claim Hxb: Rlt x b.
An exact proof term for the current goal is (andER (¬ (Rlt x a)) (Rlt x b) Hprop).
An exact proof term for the current goal is (Hnxb Hxb).