Let A, Y and g be given.
Assume Hg: ∀a : set, a Ag a Y.
We prove the intermediate claim Htot: total_function_on (graph A g) A Y.
An exact proof term for the current goal is (total_function_on_graph A Y g Hg).
We prove the intermediate claim Hfun: function_on (graph A g) A Y.
An exact proof term for the current goal is (andEL (function_on (graph A g) A Y) (∀a : set, a A∃y : set, y Y (a,y) graph A g) Htot).
We prove the intermediate claim Hsub: graph A g setprod A Y.
An exact proof term for the current goal is (graph_subset_setprod A Y g Hg).
We prove the intermediate claim Hpow: graph A g 𝒫 (setprod A Y).
An exact proof term for the current goal is (PowerI (setprod A Y) (graph A g) Hsub).
An exact proof term for the current goal is (SepI (𝒫 (setprod A Y)) (λf0 : setfunction_on f0 A Y) (graph A g) Hpow Hfun).