Let X, S, U and x be given.
Assume HU: U generated_topology_from_subbasis X S.
Assume HxU: x U.
We will prove ∃b : set, b basis_of_subbasis X S x b b U.
We prove the intermediate claim Hloc: ∀zU, ∃bbasis_of_subbasis X S, z b b U.
An exact proof term for the current goal is (SepE2 (𝒫 X) (λU0 : set∀zU0, ∃bbasis_of_subbasis X S, z b b U0) U HU).
We prove the intermediate claim Hexb: ∃bbasis_of_subbasis X S, x b b U.
An exact proof term for the current goal is (Hloc x HxU).
Apply Hexb to the current goal.
Let b be given.
Assume Hbprop.
We use b to witness the existential quantifier.
An exact proof term for the current goal is (and_assoc_rev (b basis_of_subbasis X S) (x b) (b U) Hbprop).