Let A, B, Y, f and g be given.
Assume Hdisj: A B = Empty.
Assume Hdomf: graph_domain_subset f A.
Assume Hdomg: graph_domain_subset g B.
Assume Htotf: total_function_on f A Y.
Assume Htotg: total_function_on g B Y.
Assume Hfunf: functional_graph f.
Assume Hfung: functional_graph g.
We prove the intermediate claim Hrf: graph_range_subset f Y.
An exact proof term for the current goal is (graph_range_subset_from_total_functional A Y f Hdomf Htotf Hfunf).
We prove the intermediate claim Hrg: graph_range_subset g Y.
An exact proof term for the current goal is (graph_range_subset_from_total_functional B Y g Hdomg Htotg Hfung).
We prove the intermediate claim Hrfg: graph_range_subset (f g) Y.
An exact proof term for the current goal is (graph_range_subset_binunion f g Y Hrf Hrg).
We prove the intermediate claim Htotfg: ∀x : set, x (A B)∃y : set, y Y (x,y) (f g).
Let x be given.
Assume Hx: x (A B).
Apply (binunionE A B x Hx) to the current goal.
Assume HxA: x A.
Apply (total_function_on_totality f A Y Htotf x HxA) to the current goal.
Let y be given.
Assume Hy: y Y (x,y) f.
We use y to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is (andEL (y Y) ((x,y) f) Hy).
An exact proof term for the current goal is (binunionI1 f g (x,y) (andER (y Y) ((x,y) f) Hy)).
Assume HxB: x B.
Apply (total_function_on_totality g B Y Htotg x HxB) to the current goal.
Let y be given.
Assume Hy: y Y (x,y) g.
We use y to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is (andEL (y Y) ((x,y) g) Hy).
An exact proof term for the current goal is (binunionI2 f g (x,y) (andER (y Y) ((x,y) g) Hy)).
An exact proof term for the current goal is (function_on_from_totality_and_range (A B) Y (f g) Htotfg Hrfg).