Let i be given.
We prove the intermediate
claim Hcont:
continuous_map Xi_i Ti_i Y Ty f.
An exact proof term for the current goal is (Hconti i HiO).
We prove the intermediate
claim Hprei:
preimage_of Xi_i f V ∈ Ti_i.
We prove the intermediate
claim HXiSub:
Xi_i ⊆ X.
Let x be given.
We prove the intermediate
claim HXdef:
X = ⋃ Fam.
rewrite the current goal using HXdef (from left to right).
We prove the intermediate
claim HXi_i_in:
Xi_i ∈ Fam.
An
exact proof term for the current goal is
(ReplI ω (λj : set ⇒ apply_fun Xi j) i HiO).
An
exact proof term for the current goal is
(UnionI Fam x Xi_i Hx HXi_i_in).
Let x be given.
Assume HxPre HxXi.
We prove the intermediate
claim HfxV:
apply_fun f x ∈ V.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ apply_fun f x0 ∈ V) x HxPre).
An
exact proof term for the current goal is
(SepI Xi_i (λx0 : set ⇒ apply_fun f x0 ∈ V) x HxXi HfxV).
Let x be given.
We prove the intermediate
claim HxXi:
x ∈ Xi_i.
An
exact proof term for the current goal is
(SepE1 Xi_i (λx0 : set ⇒ apply_fun f x0 ∈ V) x Hx).
We prove the intermediate
claim HfxV:
apply_fun f x ∈ V.
An
exact proof term for the current goal is
(SepE2 Xi_i (λx0 : set ⇒ apply_fun f x0 ∈ V) x Hx).
We prove the intermediate
claim HxX:
x ∈ X.
An exact proof term for the current goal is (HXiSub x HxXi).
We prove the intermediate
claim HxPre:
x ∈ preimage_of X f V.
An
exact proof term for the current goal is
(SepI X (λx0 : set ⇒ apply_fun f x0 ∈ V) x HxX HfxV).
rewrite the current goal using HpreEq (from left to right).
An exact proof term for the current goal is Hprei.