Let X, A, B, S, Ts and WF be given.
Let U and V be given.
We prove the intermediate
claim HexU:
∃x : set, x ∈ S ∧ U = component_of S Ts x.
We prove the intermediate
claim HexV:
∃y : set, y ∈ S ∧ V = component_of S Ts y.
Apply HexU to the current goal.
Let x be given.
Assume Hxpair.
We prove the intermediate
claim HxS:
x ∈ S.
Apply HexV to the current goal.
Let y be given.
Assume Hypair.
We prove the intermediate
claim HyS:
y ∈ S.
rewrite the current goal using HUeq (from left to right).
An
exact proof term for the current goal is
(ReplI S (λx0 : set ⇒ component_of S Ts x0) x HxS).
rewrite the current goal using HVeql (from left to right).
An
exact proof term for the current goal is
(ReplI S (λx0 : set ⇒ component_of S Ts x0) y HyS).
An exact proof term for the current goal is (HdisjComp U V HUinFam HVinFam Hneq).
∎