Let y be given.
We prove the intermediate
claim HyV:
y ∈ V0.
An
exact proof term for the current goal is
(binintersectE1 V0 U0 y Hy).
We prove the intermediate
claim HyU:
y ∈ U0.
An
exact proof term for the current goal is
(binintersectE2 V0 U0 y Hy).
We prove the intermediate
claim HyX:
y ∈ X.
An
exact proof term for the current goal is
(SepE1 X (λt : set ⇒ order_rel X t x1) y HyU).
We prove the intermediate
claim Hylt1:
order_rel X y x1.
An
exact proof term for the current goal is
(SepE2 X (λt : set ⇒ order_rel X t x1) y HyU).
We prove the intermediate
claim H2lty:
order_rel X x2 y.
An
exact proof term for the current goal is
(SepE2 X (λt : set ⇒ order_rel X x2 t) y HyV).
We prove the intermediate
claim HyI:
y ∈ I.
rewrite the current goal using HIEmpty (from right to left).
An exact proof term for the current goal is HyI.