Let x be given.
We prove the intermediate
claim HexW:
∃W : set, x ∈ W ∧ W ∈ P1Fam.
An
exact proof term for the current goal is
(UnionE P1Fam x Hx).
Apply HexW to the current goal.
Let W be given.
Assume HWconj.
We prove the intermediate
claim HxW:
x ∈ W.
An
exact proof term for the current goal is
(andEL (x ∈ W) (W ∈ P1Fam) HWconj).
We prove the intermediate
claim HWPF:
W ∈ P1Fam.
An
exact proof term for the current goal is
(andER (x ∈ W) (W ∈ P1Fam) HWconj).
Apply Hexb to the current goal.
Let b be given.
Assume Hbpair.
We prove the intermediate
claim HbFam:
b ∈ Fam.
rewrite the current goal using HWeq (from right to left).
An exact proof term for the current goal is HxW.
We prove the intermediate
claim HxX:
x ∈ X.
An
exact proof term for the current goal is
(SepE1 X (λx0 : set ⇒ ∃y : set, (x0,y) ∈ b) x HxP1b).
We prove the intermediate
claim Hexy:
∃y : set, (x,y) ∈ b.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ ∃y : set, (x0,y) ∈ b) x HxP1b).
We prove the intermediate
claim Hpred:
∃y : set, (x,y) ∈ ⋃ Fam.
Apply Hexy to the current goal.
Let y be given.
We prove the intermediate
claim HbInUnion:
(x,y) ∈ ⋃ Fam.
An
exact proof term for the current goal is
(UnionI Fam (x,y) b Hxy HbFam).
We use y to witness the existential quantifier.
An exact proof term for the current goal is HbInUnion.
An
exact proof term for the current goal is
(SepI X (λx0 : set ⇒ ∃y : set, (x0,y) ∈ ⋃ Fam) x HxX Hpred).
Let x be given.
We will
prove x ∈ ⋃ P1Fam.
We prove the intermediate
claim HxX:
x ∈ X.
An
exact proof term for the current goal is
(SepE1 X (λx0 : set ⇒ ∃y : set, (x0,y) ∈ ⋃ Fam) x Hx).
We prove the intermediate
claim Hexy:
∃y : set, (x,y) ∈ ⋃ Fam.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ ∃y : set, (x0,y) ∈ ⋃ Fam) x Hx).
Apply Hexy to the current goal.
Let y be given.
Let b be given.
Assume Hxyb HbFam.
We prove the intermediate
claim Hpred:
∃y0 : set, (x,y0) ∈ b.
We use y to witness the existential quantifier.
An exact proof term for the current goal is Hxyb.
An
exact proof term for the current goal is
(SepI X (λx0 : set ⇒ ∃y0 : set, (x0,y0) ∈ b) x HxX Hpred).