Let m be given.
We will prove T1_space (euclidean_space m) (euclidean_topology m).
We prove the intermediate claim HH: Hausdorff_space (euclidean_space m) (euclidean_topology m).
An exact proof term for the current goal is (euclidean_space_Hausdorff m).
We prove the intermediate claim Htop: topology_on (euclidean_space m) (euclidean_topology m).
An exact proof term for the current goal is (andEL (topology_on (euclidean_space m) (euclidean_topology m)) (∀x1 x2 : set, x1 euclidean_space mx2 euclidean_space mx1 x2∃U V : set, U euclidean_topology m V euclidean_topology m x1 U x2 V U V = Empty) HH).
We will prove topology_on (euclidean_space m) (euclidean_topology m) ∀F : set, F euclidean_space mfinite Fclosed_in (euclidean_space m) (euclidean_topology m) F.
Apply andI to the current goal.
An exact proof term for the current goal is Htop.
Let F be given.
Assume HFsub: F euclidean_space m.
Assume HFfin: finite F.
An exact proof term for the current goal is (finite_sets_closed_in_Hausdorff (euclidean_space m) (euclidean_topology m) HH F HFsub HFfin).