Let X and Y be given.
Assume Heq: equip X Y.
Assume Hfin: finite Y.
We will prove finite X.
We will prove ∃nω, equip X n.
Apply Hfin to the current goal.
Let n be given.
Assume Hpair: n ω equip Y n.
We prove the intermediate claim Hn: n ω.
An exact proof term for the current goal is (andEL (n ω) (equip Y n) Hpair).
We prove the intermediate claim HeqYn: equip Y n.
An exact proof term for the current goal is (andER (n ω) (equip Y n) Hpair).
We prove the intermediate claim HeqXn: equip X n.
An exact proof term for the current goal is (equip_tra X Y n Heq HeqYn).
We use n to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is Hn.
An exact proof term for the current goal is HeqXn.