Let X and Y be given.
Assume Heq: equip X Y.
Assume HcountX: countable_set X.
We will prove countable_set Y.
We prove the intermediate claim Heq_sym: equip Y X.
An exact proof term for the current goal is (equip_sym X Y Heq).
We prove the intermediate claim Hayx: atleastp Y X.
An exact proof term for the current goal is (equip_atleastp Y X Heq_sym).
An exact proof term for the current goal is (atleastp_tra Y X ω Hayx HcountX).