Let X and Y be given.
We prove the intermediate
claim Heq_sym:
equip Y X.
An
exact proof term for the current goal is
(equip_sym X Y Heq).
We prove the intermediate
claim Hayx:
atleastp Y X.
An
exact proof term for the current goal is
(equip_atleastp Y X Heq_sym).
An
exact proof term for the current goal is
(atleastp_tra Y X ω Hayx HcountX).
∎