Let X be given.
We will prove 𝒫 X 𝒫 X Empty 𝒫 X X 𝒫 X (∀UFam𝒫 (𝒫 X), UFam 𝒫 X) (∀U𝒫 X, ∀V𝒫 X, U V 𝒫 X).
Apply and5I to the current goal.
An exact proof term for the current goal is (Subq_ref (𝒫 X)).
Apply Empty_In_Power to the current goal.
Apply PowerI to the current goal.
An exact proof term for the current goal is (Subq_ref X).
We will prove ∀UFam𝒫 (𝒫 X), UFam 𝒫 X.
Let UFam be given.
Assume Hfam: UFam 𝒫 (𝒫 X).
Apply PowerI X ( UFam) to the current goal.
Let x be given.
Assume HxUnion: x UFam.
Apply UnionE_impred UFam x HxUnion to the current goal.
Let U be given.
Assume HUinx: x U.
Assume HUinFam: U UFam.
We prove the intermediate claim HFamSub: UFam 𝒫 X.
An exact proof term for the current goal is (iffEL (UFam 𝒫 (𝒫 X)) (UFam 𝒫 X) (PowerEq (𝒫 X) UFam) Hfam).
We prove the intermediate claim HUinPower: U 𝒫 X.
An exact proof term for the current goal is HFamSub U HUinFam.
We prove the intermediate claim HUsub: U X.
An exact proof term for the current goal is (iffEL (U 𝒫 X) (U X) (PowerEq X U) HUinPower).
An exact proof term for the current goal is (HUsub x HUinx).
We will prove ∀U𝒫 X, ∀V𝒫 X, U V 𝒫 X.
Let U be given.
Assume HU: U 𝒫 X.
Let V be given.
Assume HV: V 𝒫 X.
Apply PowerI X (U V) to the current goal.
Let x be given.
Assume Hxcap: x U V.
Apply binintersectE U V x Hxcap to the current goal.
Assume HxU HxV.
We prove the intermediate claim HUsub: U X.
An exact proof term for the current goal is (iffEL (U 𝒫 X) (U X) (PowerEq X U) HU).
An exact proof term for the current goal is (HUsub x HxU).