Let J and le be given.
We will
prove ∀i j : set, i ∈ J → j ∈ J → ∃k : set, k ∈ J ∧ (i,k) ∈ le ∧ (j,k) ∈ le.
Let i and j be given.
We prove the intermediate
claim Hdir:
∀a b : set, a ∈ J → b ∈ J → ∃c : set, c ∈ J ∧ (a,c) ∈ le ∧ (b,c) ∈ le.
An exact proof term for the current goal is (Hdir i j HiJ HjJ).
∎