Let J and le be given.
Assume HJ: directed_set J le.
We will prove ∀i j : set, i Jj J∃k : set, k J (i,k) le (j,k) le.
Let i and j be given.
Assume HiJ: i J.
Assume HjJ: j J.
We prove the intermediate claim Hdir: ∀a b : set, a Jb J∃c : set, c J (a,c) le (b,c) le.
An exact proof term for the current goal is (andER (J Empty partial_order_on J le) (∀a b : set, a Jb J∃c : set, c J (a,c) le (b,c) le) HJ).
An exact proof term for the current goal is (Hdir i j HiJ HjJ).