Let J, le and i be given.
We will
prove ∃k : set, k ∈ J ∧ (i,k) ∈ le.
We prove the intermediate
claim Hexk:
∃k : set, k ∈ J ∧ (i,k) ∈ le ∧ (i,k) ∈ le.
Apply Hexk to the current goal.
Let k be given.
Assume Hk.
We use k to witness the existential quantifier.
An
exact proof term for the current goal is
(andEL (k ∈ J ∧ (i,k) ∈ le) ((i,k) ∈ le) Hk).
∎