Let J, le and i be given.
Assume HJ: directed_set J le.
Assume HiJ: i J.
We will prove ∃k : set, k J (i,k) le.
We prove the intermediate claim Hexk: ∃k : set, k J (i,k) le (i,k) le.
An exact proof term for the current goal is (directed_set_upper_bound_property J le HJ i i HiJ HiJ).
Apply Hexk to the current goal.
Let k be given.
Assume Hk.
We use k to witness the existential quantifier.
An exact proof term for the current goal is (andEL (k J (i,k) le) ((i,k) le) Hk).