Let J and le be given.
Assume HJ: directed_set J le.
We will prove J Empty.
We prove the intermediate claim Hleft: J Empty partial_order_on J le.
An exact proof term for the current goal is (andEL (J Empty partial_order_on J le) (∀a b : set, a Jb J∃c : set, c J (a,c) le (b,c) le) HJ).
An exact proof term for the current goal is (andEL (J Empty) (partial_order_on J le) Hleft).