Let X and Fam be given.
Assume Hcov: covers X Fam.
We will prove X Fam.
Let x be given.
Assume HxX: x X.
We will prove x Fam.
We prove the intermediate claim Hexu: ∃u : set, u Fam x u.
An exact proof term for the current goal is (Hcov x HxX).
Apply (exandE_i (λu : setu Fam) (λu : setx u) Hexu (x Fam)) to the current goal.
Let u be given.
Assume HuFam: u Fam.
Assume Hxu: x u.
An exact proof term for the current goal is (UnionI Fam x u Hxu HuFam).