Let X and Fam be given.
Let x be given.
We prove the intermediate
claim Hexu:
∃u : set, u ∈ Fam ∧ x ∈ u.
An exact proof term for the current goal is (Hcov x HxX).
Apply (exandE_i (λu : set ⇒ u ∈ Fam) (λu : set ⇒ x ∈ u) Hexu (x ∈ ⋃ Fam)) to the current goal.
Let u be given.
An
exact proof term for the current goal is
(UnionI Fam x u Hxu HuFam).
∎