Let X be given.
Let U be given.
We prove the intermediate
claim HUinPow:
U ∈ 𝒫 X.
An
exact proof term for the current goal is
(SepE1 (𝒫 X) (λU0 : set ⇒ finite (X ∖ U0) ∨ U0 = Empty) U HU).
An
exact proof term for the current goal is
(SepE2 (𝒫 X) (λU0 : set ⇒ finite (X ∖ U0) ∨ U0 = Empty) U HU).
Apply orIL to the current goal.
Apply orIR to the current goal.
An exact proof term for the current goal is HUemp.
An
exact proof term for the current goal is
(SepI (𝒫 X) (λU0 : set ⇒ countable (X ∖ U0) ∨ U0 = Empty) U HUinPow HUpred).
∎