We will prove convex_in Sbar_Omega S_Omega.
We will prove S_Omega Sbar_Omega ∀a b : set, a S_Omegab S_Omegaorder_interval Sbar_Omega a b S_Omega.
Apply andI to the current goal.
An exact proof term for the current goal is S_Omega_Subq_Sbar_Omega.
Let a and b be given.
Assume Ha: a S_Omega.
Assume Hb: b S_Omega.
We will prove order_interval Sbar_Omega a b S_Omega.
Let x be given.
Assume HxInt: x order_interval Sbar_Omega a b.
We will prove x S_Omega.
We prove the intermediate claim Hpack: x Sbar_Omega (order_rel Sbar_Omega a x order_rel Sbar_Omega x b).
An exact proof term for the current goal is (order_intervalE Sbar_Omega a b x HxInt).
We prove the intermediate claim Hrel: order_rel Sbar_Omega a x order_rel Sbar_Omega x b.
An exact proof term for the current goal is (andER (x Sbar_Omega) (order_rel Sbar_Omega a x order_rel Sbar_Omega x b) Hpack).
We prove the intermediate claim Hxb: order_rel Sbar_Omega x b.
An exact proof term for the current goal is (andER (order_rel Sbar_Omega a x) (order_rel Sbar_Omega x b) Hrel).
We prove the intermediate claim HxInb: x b.
An exact proof term for the current goal is (order_rel_well_ordered_implies_mem Sbar_Omega x b Sbar_Omega_well_ordered_set Hxb).
We prove the intermediate claim HbSub: b S_Omega.
An exact proof term for the current goal is (S_Omega_TransSet b Hb).
An exact proof term for the current goal is (HbSub x HxInb).