Let X, Tx, A, seq and x be given.
Assume Hxlim: converges_to X Tx seq x.
Assume HseqA: ∀n : set, n ωapply_fun seq n A.
We will prove x closure_of X Tx A.
We prove the intermediate claim HxX: x X.
An exact proof term for the current goal is (converges_to_point_in_X X Tx seq x Hxlim).
We prove the intermediate claim Hnbhd: ∀U : set, U Txx UU A Empty.
Let U be given.
Assume HU: U Tx.
Assume HxU: x U.
We prove the intermediate claim HexN: ∃N : set, N ω ∀n : set, n ωN napply_fun seq n U.
An exact proof term for the current goal is (converges_to_neighborhoods X Tx seq x Hxlim U HU HxU).
Apply HexN to the current goal.
Let N be given.
Assume HNpair: N ω ∀n : set, n ωN napply_fun seq n U.
We prove the intermediate claim HNO: N ω.
An exact proof term for the current goal is (andEL (N ω) (∀n : set, n ωN napply_fun seq n U) HNpair).
We prove the intermediate claim Htail: ∀n : set, n ωN napply_fun seq n U.
An exact proof term for the current goal is (andER (N ω) (∀n : set, n ωN napply_fun seq n U) HNpair).
We prove the intermediate claim HNinU: apply_fun seq N U.
An exact proof term for the current goal is (Htail N HNO (Subq_ref N)).
We prove the intermediate claim HNinA: apply_fun seq N A.
An exact proof term for the current goal is (HseqA N HNO).
We prove the intermediate claim HNinUA: apply_fun seq N U A.
An exact proof term for the current goal is (binintersectI U A (apply_fun seq N) HNinU HNinA).
An exact proof term for the current goal is (elem_implies_nonempty (U A) (apply_fun seq N) HNinUA).
An exact proof term for the current goal is (SepI X (λx0 : set∀U : set, U Txx0 UU A Empty) x HxX Hnbhd).