Let U be given.
We prove the intermediate
claim HexN:
∃N : set, N ∈ ω ∧ ∀n : set, n ∈ ω → N ⊆ n → apply_fun seq n ∈ U.
Apply HexN to the current goal.
Let N be given.
We prove the intermediate
claim HNO:
N ∈ ω.
An
exact proof term for the current goal is
(andEL (N ∈ ω) (∀n : set, n ∈ ω → N ⊆ n → apply_fun seq n ∈ U) HNpair).
We prove the intermediate
claim Htail:
∀n : set, n ∈ ω → N ⊆ n → apply_fun seq n ∈ U.
An
exact proof term for the current goal is
(andER (N ∈ ω) (∀n : set, n ∈ ω → N ⊆ n → apply_fun seq n ∈ U) HNpair).
We prove the intermediate
claim HNinU:
apply_fun seq N ∈ U.
An
exact proof term for the current goal is
(Htail N HNO (Subq_ref N)).
We prove the intermediate
claim HNinA:
apply_fun seq N ∈ A.
An exact proof term for the current goal is (HseqA N HNO).
We prove the intermediate
claim HNinUA:
apply_fun seq N ∈ U ∩ A.