Let X, Tx, A, seq, x and N be given.
Assume Hxlim: converges_to X Tx seq x.
Assume HNomega: N ω.
Assume HtailA: ∀n : set, n ωN napply_fun seq n A.
We will prove x closure_of X Tx A.
We prove the intermediate claim HxX: x X.
An exact proof term for the current goal is (converges_to_point_in_X X Tx seq x Hxlim).
We prove the intermediate claim Hnbhd: ∀U : set, U Txx UU A Empty.
Let U be given.
Assume HU: U Tx.
Assume HxU: x U.
We prove the intermediate claim HexN1: ∃N1 : set, N1 ω ∀n : set, n ωN1 napply_fun seq n U.
An exact proof term for the current goal is (converges_to_neighborhoods X Tx seq x Hxlim U HU HxU).
Apply HexN1 to the current goal.
Let N1 be given.
Assume HN1pair: N1 ω ∀n : set, n ωN1 napply_fun seq n U.
We prove the intermediate claim HN1omega: N1 ω.
An exact proof term for the current goal is (andEL (N1 ω) (∀n : set, n ωN1 napply_fun seq n U) HN1pair).
We prove the intermediate claim HtailU: ∀n : set, n ωN1 napply_fun seq n U.
An exact proof term for the current goal is (andER (N1 ω) (∀n : set, n ωN1 napply_fun seq n U) HN1pair).
Set n0 to be the term N N1.
We prove the intermediate claim Hn0omega: n0 ω.
An exact proof term for the current goal is (omega_binunion N N1 HNomega HN1omega).
We prove the intermediate claim HNsubn0: N n0.
An exact proof term for the current goal is (binunion_Subq_1 N N1).
We prove the intermediate claim HN1subn0: N1 n0.
An exact proof term for the current goal is (binunion_Subq_2 N N1).
We prove the intermediate claim Hn0inU: apply_fun seq n0 U.
An exact proof term for the current goal is (HtailU n0 Hn0omega HN1subn0).
We prove the intermediate claim Hn0inA: apply_fun seq n0 A.
An exact proof term for the current goal is (HtailA n0 Hn0omega HNsubn0).
We prove the intermediate claim Hn0inUA: apply_fun seq n0 U A.
An exact proof term for the current goal is (binintersectI U A (apply_fun seq n0) Hn0inU Hn0inA).
An exact proof term for the current goal is (elem_implies_nonempty (U A) (apply_fun seq n0) Hn0inUA).
An exact proof term for the current goal is (SepI X (λx0 : set∀U : set, U Txx0 UU A Empty) x HxX Hnbhd).