Let X, Tx, A and x be given.
Apply Hseq to the current goal.
Let seq be given.
Assume Hseqpair.
We prove the intermediate
claim Hseqin:
sequence_in seq A.
We prove the intermediate
claim Hconv:
converges_to X Tx seq x.
We prove the intermediate
claim HxX:
x ∈ X.
We will
prove ∀U ∈ Tx, x ∈ U → U ∩ A ≠ Empty.
Let U be given.
We prove the intermediate
claim Hevent:
∃N : set, N ∈ ω ∧ ∀n : set, n ∈ ω → N ⊆ n → apply_fun seq n ∈ U.
We prove the intermediate
claim Htail0:
∀V : set, V ∈ Tx → x ∈ V → ∃N : set, N ∈ ω ∧ ∀n : set, n ∈ ω → N ⊆ n → apply_fun seq n ∈ V.
An exact proof term for the current goal is (Htail0 U HU HxU).
Apply Hevent to the current goal.
Let N be given.
Assume HNpair.
We prove the intermediate
claim HNomega:
N ∈ ω.
An
exact proof term for the current goal is
(andEL (N ∈ ω) (∀n : set, n ∈ ω → N ⊆ n → apply_fun seq n ∈ U) HNpair).
We prove the intermediate
claim Htail:
∀n : set, n ∈ ω → N ⊆ n → apply_fun seq n ∈ U.
An
exact proof term for the current goal is
(andER (N ∈ ω) (∀n : set, n ∈ ω → N ⊆ n → apply_fun seq n ∈ U) HNpair).
We prove the intermediate
claim HyU:
apply_fun seq N ∈ U.
An
exact proof term for the current goal is
(Htail N HNomega (Subq_ref N)).
We prove the intermediate
claim HyA:
apply_fun seq N ∈ A.
An exact proof term for the current goal is (Hseqin N HNomega).
We prove the intermediate
claim HyUA:
apply_fun seq N ∈ U ∩ A.
rewrite the current goal using HUAEq (from right to left).
An exact proof term for the current goal is HyUA.
∎