Let x be given.
We prove the intermediate
claim HxX:
x ∈ X.
An
exact proof term for the current goal is
(SepE1 X (λx0 : set ⇒ ∀U0 : set, U0 ∈ Fam' → x0 ∈ U0) x Hx).
We prove the intermediate
claim HxAll:
∀V : set, V ∈ Fam' → x ∈ V.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ ∀U0 : set, U0 ∈ Fam' → x0 ∈ U0) x Hx).
rewrite the current goal using HpreDef (from left to right).
Apply (SepI X (λx0 : set ⇒ apply_fun f x0 ∈ A) x HxX) to the current goal.
rewrite the current goal using HIntEq (from right to left).
We prove the intermediate
claim HfXY:
function_on f X Y.
rewrite the current goal using HIntYDef (from left to right).
Apply (SepI Y (λy0 : set ⇒ ∀U0 : set, U0 ∈ Fam → y0 ∈ U0) (apply_fun f x) (HfXY x HxX)) to the current goal.
Let U0 be given.
We prove the intermediate
claim HVinFam':
preimage_of X f U0 ∈ Fam'.
An
exact proof term for the current goal is
(ReplI Fam (λU : set ⇒ preimage_of X f U) U0 HU0).
We prove the intermediate
claim HxPre:
x ∈ preimage_of X f U0.
An
exact proof term for the current goal is
(HxAll (preimage_of X f U0) HVinFam').
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ apply_fun f x0 ∈ U0) x HxPre).
Let x be given.
We prove the intermediate
claim HxX:
x ∈ X.
An
exact proof term for the current goal is
(SepE1 X (λx0 : set ⇒ apply_fun f x0 ∈ A) x Hx).
rewrite the current goal using HIntXDef (from left to right).
Apply (SepI X (λx0 : set ⇒ ∀V0 : set, V0 ∈ Fam' → x0 ∈ V0) x HxX) to the current goal.
Let V0 be given.
Let U0 be given.
rewrite the current goal using HV0eq (from left to right).
rewrite the current goal using HpreU0Def (from left to right).
Apply (SepI X (λx0 : set ⇒ apply_fun f x0 ∈ U0) x HxX) to the current goal.
We prove the intermediate
claim HfxA:
apply_fun f x ∈ A.
An
exact proof term for the current goal is
(SepE2 X (λx0 : set ⇒ apply_fun f x0 ∈ A) x Hx).
rewrite the current goal using HIntEq (from left to right).
An exact proof term for the current goal is HfxA.
We prove the intermediate
claim HfxAll:
∀U1 : set, U1 ∈ Fam → apply_fun f x ∈ U1.
An
exact proof term for the current goal is
(SepE2 Y (λy0 : set ⇒ ∀U1 : set, U1 ∈ Fam → y0 ∈ U1) (apply_fun f x) HfxInt).
An exact proof term for the current goal is (HfxAll U0 HU0).