Let X, Tx, Y, Ty and f be given.
Assume HTx: topology_on X Tx.
Assume HTy: topology_on Y Ty.
Assume Hloc: ∃UFam : set, UFam Tx UFam = X (∀U : set, U UFamcontinuous_map U (subspace_topology X Tx U) Y Ty f).
We will prove continuous_map X Tx Y Ty f.
We prove the intermediate claim Hrules: (∀y0 : set, y0 Ycontinuous_map X Tx Y Ty (const_fun X y0)) (∀A : set, A Xcontinuous_map A (subspace_topology X Tx A) X Tx {(y,y)|yA}) (∀f0 g0 : set, continuous_map X Tx Y Ty f0continuous_map Y Ty Y Ty g0continuous_map X Tx Y Ty (compose_fun X f0 g0)) (∀f0 A : set, A Xcontinuous_map X Tx Y Ty f0continuous_map A (subspace_topology X Tx A) Y Ty f0) ((∀f0 Z0 : set, continuous_map X Tx Y Ty f0Z0 Y(∀x : set, x Xapply_fun f0 x Z0)continuous_map X Tx Z0 (subspace_topology Y Ty Z0) f0) (∀f0 Z0 Tz0 : set, continuous_map X Tx Y Ty f0Y Z0topology_on Z0 Tz0Ty = subspace_topology Z0 Tz0 Ycontinuous_map X Tx Z0 Tz0 f0)) (∀f0 : set, (∃UFam : set, UFam Tx UFam = X (∀U : set, U UFamcontinuous_map U (subspace_topology X Tx U) Y Ty f0))continuous_map X Tx Y Ty f0).
An exact proof term for the current goal is (continuous_construction_rules X Tx Y Ty Y Ty HTx HTy HTy).
Apply (and6E (∀y0 : set, y0 Ycontinuous_map X Tx Y Ty (const_fun X y0)) (∀A : set, A Xcontinuous_map A (subspace_topology X Tx A) X Tx {(y,y)|yA}) (∀f0 g0 : set, continuous_map X Tx Y Ty f0continuous_map Y Ty Y Ty g0continuous_map X Tx Y Ty (compose_fun X f0 g0)) (∀f0 A : set, A Xcontinuous_map X Tx Y Ty f0continuous_map A (subspace_topology X Tx A) Y Ty f0) ((∀f0 Z0 : set, continuous_map X Tx Y Ty f0Z0 Y(∀x : set, x Xapply_fun f0 x Z0)continuous_map X Tx Z0 (subspace_topology Y Ty Z0) f0) (∀f0 Z0 Tz0 : set, continuous_map X Tx Y Ty f0Y Z0topology_on Z0 Tz0Ty = subspace_topology Z0 Tz0 Ycontinuous_map X Tx Z0 Tz0 f0)) (∀f0 : set, (∃UFam : set, UFam Tx UFam = X (∀U : set, U UFamcontinuous_map U (subspace_topology X Tx U) Y Ty f0))continuous_map X Tx Y Ty f0) Hrules (continuous_map X Tx Y Ty f)) to the current goal.
Assume _ _ _ _ _ Hlast.
An exact proof term for the current goal is (Hlast f Hloc).