Let X, Tx, Y, Ty and f be given.
Assume HTx: topology_on X Tx.
Assume HTy: topology_on Y Ty.
Assume Hf: function_on f X Y.
Assume Hcont: ∀V : set, V Typreimage_of X f V Tx.
Let x be given.
Assume Hx: x X.
Let V be given.
Assume HV: V Ty.
Assume Hfx: apply_fun f x V.
We use (preimage_of X f V) to witness the existential quantifier.
Apply and3I to the current goal.
An exact proof term for the current goal is (Hcont V HV).
We will prove x preimage_of X f V.
We will prove x {xX|apply_fun f x V}.
An exact proof term for the current goal is (SepI X (λx ⇒ apply_fun f x V) x Hx Hfx).
Let u be given.
Assume Hu: u preimage_of X f V.
We will prove apply_fun f u V.
Apply (SepE X (λx ⇒ apply_fun f x V) u Hu) to the current goal.
Assume _.
Assume H.
An exact proof term for the current goal is H.