Let X, Tx, g and h be given.
Assume Hgcont: continuous_map X Tx R R_standard_topology g.
Assume Hhcont: continuous_map X Tx R R_standard_topology h.
We will prove {xX|Rlt (apply_fun h x) (apply_fun g x)} Tx.
We prove the intermediate claim HpairCont: continuous_map X Tx EuclidPlane R2_standard_topology (pair_map X g h).
rewrite the current goal using R2_standard_equals_product (from left to right).
An exact proof term for the current goal is (maps_into_products_axiom X Tx R R_standard_topology R R_standard_topology g h Hgcont Hhcont).
Set Gt to be the term {pEuclidPlane|Rlt (p 1) (p 0)}.
We prove the intermediate claim HGtOpen: Gt R2_standard_topology.
An exact proof term for the current goal is R2_strict_gt_open.
We prove the intermediate claim HpreOpen: preimage_of X (pair_map X g h) Gt Tx.
An exact proof term for the current goal is (continuous_map_preimage X Tx EuclidPlane R2_standard_topology (pair_map X g h) HpairCont Gt HGtOpen).
We prove the intermediate claim HpreEq: preimage_of X (pair_map X g h) Gt = {xX|Rlt (apply_fun h x) (apply_fun g x)}.
Apply set_ext to the current goal.
Let x be given.
Assume HxPre: x preimage_of X (pair_map X g h) Gt.
We will prove x {x0X|Rlt (apply_fun h x0) (apply_fun g x0)}.
We prove the intermediate claim HxX: x X.
An exact proof term for the current goal is (SepE1 X (λx0 : setapply_fun (pair_map X g h) x0 Gt) x HxPre).
We prove the intermediate claim Himg: apply_fun (pair_map X g h) x Gt.
An exact proof term for the current goal is (SepE2 X (λx0 : setapply_fun (pair_map X g h) x0 Gt) x HxPre).
We prove the intermediate claim Happ: apply_fun (pair_map X g h) x = (apply_fun g x,apply_fun h x).
An exact proof term for the current goal is (pair_map_apply X R R g h x HxX).
We prove the intermediate claim Himg2: (apply_fun g x,apply_fun h x) Gt.
rewrite the current goal using Happ (from right to left).
An exact proof term for the current goal is Himg.
We prove the intermediate claim HltPair: Rlt ((apply_fun g x,apply_fun h x) 1) ((apply_fun g x,apply_fun h x) 0).
An exact proof term for the current goal is (SepE2 EuclidPlane (λp0 : setRlt (p0 1) (p0 0)) (apply_fun g x,apply_fun h x) Himg2).
We prove the intermediate claim Hlt: Rlt (apply_fun h x) (apply_fun g x).
rewrite the current goal using (tuple_2_1_eq (apply_fun g x) (apply_fun h x)) (from right to left) at position 1.
rewrite the current goal using (tuple_2_0_eq (apply_fun g x) (apply_fun h x)) (from right to left) at position 2.
An exact proof term for the current goal is HltPair.
An exact proof term for the current goal is (SepI X (λx0 : setRlt (apply_fun h x0) (apply_fun g x0)) x HxX Hlt).
Let x be given.
Assume HxLt: x {x0X|Rlt (apply_fun h x0) (apply_fun g x0)}.
We will prove x preimage_of X (pair_map X g h) Gt.
We prove the intermediate claim HxX: x X.
An exact proof term for the current goal is (SepE1 X (λx0 : setRlt (apply_fun h x0) (apply_fun g x0)) x HxLt).
We prove the intermediate claim Hlt: Rlt (apply_fun h x) (apply_fun g x).
An exact proof term for the current goal is (SepE2 X (λx0 : setRlt (apply_fun h x0) (apply_fun g x0)) x HxLt).
We prove the intermediate claim HhxR: apply_fun h x R.
An exact proof term for the current goal is (RltE_left (apply_fun h x) (apply_fun g x) Hlt).
We prove the intermediate claim HgxR: apply_fun g x R.
An exact proof term for the current goal is (RltE_right (apply_fun h x) (apply_fun g x) Hlt).
We prove the intermediate claim HpPlane: (apply_fun g x,apply_fun h x) EuclidPlane.
An exact proof term for the current goal is (tuple_2_setprod_by_pair_Sigma R R (apply_fun g x) (apply_fun h x) HgxR HhxR).
We prove the intermediate claim HltPair: Rlt ((apply_fun g x,apply_fun h x) 1) ((apply_fun g x,apply_fun h x) 0).
rewrite the current goal using (tuple_2_1_eq (apply_fun g x) (apply_fun h x)) (from left to right).
rewrite the current goal using (tuple_2_0_eq (apply_fun g x) (apply_fun h x)) (from left to right).
An exact proof term for the current goal is Hlt.
We prove the intermediate claim HpGt: (apply_fun g x,apply_fun h x) Gt.
An exact proof term for the current goal is (SepI EuclidPlane (λp0 : setRlt (p0 1) (p0 0)) (apply_fun g x,apply_fun h x) HpPlane HltPair).
We prove the intermediate claim Happ: apply_fun (pair_map X g h) x = (apply_fun g x,apply_fun h x).
An exact proof term for the current goal is (pair_map_apply X R R g h x HxX).
We prove the intermediate claim Himg: apply_fun (pair_map X g h) x Gt.
rewrite the current goal using Happ (from left to right).
An exact proof term for the current goal is HpGt.
An exact proof term for the current goal is (SepI X (λx0 : setapply_fun (pair_map X g h) x0 Gt) x HxX Himg).
rewrite the current goal using HpreEq (from right to left).
An exact proof term for the current goal is HpreOpen.