Let A, Y and x be given.
Assume HxY: x Y.
We will prove function_on (const_fun A x) A Y ∀a : set, a A∃y : set, y Y (a,y) const_fun A x.
Apply andI to the current goal.
Let a be given.
Assume HaA: a A.
We will prove apply_fun (const_fun A x) a Y.
We prove the intermediate claim Happ: apply_fun (const_fun A x) a = x.
An exact proof term for the current goal is (const_fun_apply A x a HaA).
rewrite the current goal using Happ (from left to right).
An exact proof term for the current goal is HxY.
Let a be given.
Assume HaA: a A.
We will prove ∃y : set, y Y (a,y) const_fun A x.
We use x to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is HxY.
An exact proof term for the current goal is (ReplI A (λa0 : set(a0,x)) a HaA).