Let X, Tx, x and F be given.
Assume Hcr: completely_regular_space X Tx.
Assume HxX: x X.
Assume HFcl: closed_in X Tx F.
Assume HxnotF: x F.
We will prove ∃f : set, continuous_map X Tx R R_standard_topology f apply_fun f x = 0 ∀y : set, y Fapply_fun f y = 1.
We prove the intermediate claim Hdef: topology_on X Tx (one_point_sets_closed X Tx ∀x0 : set, x0 X∀F0 : set, closed_in X Tx F0x0 F0∃f0 : set, continuous_map X Tx R R_standard_topology f0 apply_fun f0 x0 = 0 ∀y0 : set, y0 F0apply_fun f0 y0 = 1).
An exact proof term for the current goal is Hcr.
We prove the intermediate claim Hrest: one_point_sets_closed X Tx ∀x0 : set, x0 X∀F0 : set, closed_in X Tx F0x0 F0∃f0 : set, continuous_map X Tx R R_standard_topology f0 apply_fun f0 x0 = 0 ∀y0 : set, y0 F0apply_fun f0 y0 = 1.
An exact proof term for the current goal is (andER (topology_on X Tx) (one_point_sets_closed X Tx ∀x0 : set, x0 X∀F0 : set, closed_in X Tx F0x0 F0∃f0 : set, continuous_map X Tx R R_standard_topology f0 apply_fun f0 x0 = 0 ∀y0 : set, y0 F0apply_fun f0 y0 = 1) Hdef).
We prove the intermediate claim Hforall: ∀x0 : set, x0 X∀F0 : set, closed_in X Tx F0x0 F0∃f0 : set, continuous_map X Tx R R_standard_topology f0 apply_fun f0 x0 = 0 ∀y0 : set, y0 F0apply_fun f0 y0 = 1.
An exact proof term for the current goal is (andER (one_point_sets_closed X Tx) (∀x0 : set, x0 X∀F0 : set, closed_in X Tx F0x0 F0∃f0 : set, continuous_map X Tx R R_standard_topology f0 apply_fun f0 x0 = 0 ∀y0 : set, y0 F0apply_fun f0 y0 = 1) Hrest).
An exact proof term for the current goal is (Hforall x HxX F HFcl HxnotF).