Let x be given.
An exact proof term for the current goal is (Hall x).
We prove the intermediate
claim HnotForallU:
¬ (∀U : set, U ∈ Tx → x ∈ U → ∀j0 : set, j0 ∈ J → ∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U).
Apply Hnacc to the current goal.
Let U be given.
We prove the intermediate
claim HUa:
U ∈ Tx ∧ ¬ (x ∈ U → ∀j0 : set, j0 ∈ J → ∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U).
An
exact proof term for the current goal is
(not_imp (U ∈ Tx) (x ∈ U → ∀j0 : set, j0 ∈ J → ∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U) HnU).
We prove the intermediate
claim HUTx:
U ∈ Tx.
An
exact proof term for the current goal is
(andEL (U ∈ Tx) (¬ (x ∈ U → ∀j0 : set, j0 ∈ J → ∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U)) HUa).
We prove the intermediate
claim Hn2:
¬ (x ∈ U → ∀j0 : set, j0 ∈ J → ∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U).
An
exact proof term for the current goal is
(andER (U ∈ Tx) (¬ (x ∈ U → ∀j0 : set, j0 ∈ J → ∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U)) HUa).
We prove the intermediate
claim Hxb:
x ∈ U ∧ ¬ (∀j0 : set, j0 ∈ J → ∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U).
An
exact proof term for the current goal is
(not_imp (x ∈ U) (∀j0 : set, j0 ∈ J → ∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U) Hn2).
We prove the intermediate
claim HxU:
x ∈ U.
An
exact proof term for the current goal is
(andEL (x ∈ U) (¬ (∀j0 : set, j0 ∈ J → ∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U)) Hxb).
We prove the intermediate
claim HnForallj0:
¬ (∀j0 : set, j0 ∈ J → ∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U).
An
exact proof term for the current goal is
(andER (x ∈ U) (¬ (∀j0 : set, j0 ∈ J → ∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U)) Hxb).
Let j0 be given.
We prove the intermediate
claim Hj0a:
j0 ∈ J ∧ ¬ (∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U).
An
exact proof term for the current goal is
(not_imp (j0 ∈ J) (∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U) Hnj0).
We prove the intermediate
claim Hj0J:
j0 ∈ J.
An
exact proof term for the current goal is
(andEL (j0 ∈ J) (¬ (∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U)) Hj0a).
We prove the intermediate
claim HnExj:
¬ (∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U).
An
exact proof term for the current goal is
(andER (j0 ∈ J) (¬ (∃j : set, j ∈ J ∧ (j0,j) ∈ le ∧ apply_fun net j ∈ U)) Hj0a).
We use U to witness the existential quantifier.
We use j0 to witness the existential quantifier.
We will
prove ((U ∈ Tx ∧ x ∈ U) ∧ j0 ∈ J) ∧ ∀j : set, j ∈ J → (j0,j) ∈ le → ¬ (apply_fun net j ∈ U).
Apply andI to the current goal.
Apply andI to the current goal.
Apply andI to the current goal.
An exact proof term for the current goal is HUTx.
An exact proof term for the current goal is HxU.
An exact proof term for the current goal is Hj0J.
Let j be given.
Apply HnExj to the current goal.
We use j to witness the existential quantifier.
Apply andI to the current goal.
Apply andI to the current goal.
An exact proof term for the current goal is HjJ.
An exact proof term for the current goal is Hj0j.
An exact proof term for the current goal is HjU.
We prove the intermediate
claim HTsub:
Tx ⊆ 𝒫 X.
We prove the intermediate
claim HpickBad:
∀x : set, x ∈ X → Bad x ((pickpair x) 0) ((pickpair x) 1).
Let x be given.
We prove the intermediate
claim HexUJ:
∃U j0 : set, Bad x U j0.
An exact proof term for the current goal is (HexBad x HxX).
Apply HexUJ to the current goal.
Let U be given.
Apply Hexj0 to the current goal.
Let j0 be given.
Assume Hbad: Bad x U j0.
We prove the intermediate
claim Hbadleft:
(U ∈ Tx ∧ x ∈ U) ∧ j0 ∈ J.
An
exact proof term for the current goal is
(andEL ((U ∈ Tx ∧ x ∈ U) ∧ j0 ∈ J) (∀j : set, j ∈ J → (j0,j) ∈ le → ¬ (apply_fun net j ∈ U)) Hbad).
We prove the intermediate
claim HbadUx:
U ∈ Tx ∧ x ∈ U.
An
exact proof term for the current goal is
(andEL (U ∈ Tx ∧ x ∈ U) (j0 ∈ J) Hbadleft).
We prove the intermediate
claim HUTx:
U ∈ Tx.
An
exact proof term for the current goal is
(andEL (U ∈ Tx) (x ∈ U) HbadUx).
We prove the intermediate
claim HxU:
x ∈ U.
An
exact proof term for the current goal is
(andER (U ∈ Tx) (x ∈ U) HbadUx).
We prove the intermediate
claim Hj0J:
j0 ∈ J.
An
exact proof term for the current goal is
(andER (U ∈ Tx ∧ x ∈ U) (j0 ∈ J) Hbadleft).
We prove the intermediate
claim Htail:
∀j : set, j ∈ J → (j0,j) ∈ le → ¬ (apply_fun net j ∈ U).
An
exact proof term for the current goal is
(andER ((U ∈ Tx ∧ x ∈ U) ∧ j0 ∈ J) (∀j : set, j ∈ J → (j0,j) ∈ le → ¬ (apply_fun net j ∈ U)) Hbad).
We prove the intermediate
claim Hp:
(((U,j0) ∈ setprod Tx J ∧ x ∈ ((U,j0) 0)) ∧ ((U,j0) 1) ∈ J) ∧ ∀j : set, j ∈ J → (((U,j0) 1),j) ∈ le → ¬ (apply_fun net j ∈ ((U,j0) 0)).
Apply andI to the current goal.
Apply andI to the current goal.
Apply andI to the current goal.
rewrite the current goal using
(tuple_2_0_eq U j0) (from left to right).
An exact proof term for the current goal is HxU.
rewrite the current goal using
(tuple_2_1_eq U j0) (from left to right).
An exact proof term for the current goal is Hj0J.
Let j be given.
We prove the intermediate
claim Hj0j':
(j0,j) ∈ le.
rewrite the current goal using
(tuple_2_1_eq U j0) (from right to left).
An exact proof term for the current goal is Hj0j.
rewrite the current goal using
(tuple_2_0_eq U j0) (from left to right).
An exact proof term for the current goal is (Htail j HjJ Hj0j').
We prove the intermediate
claim Hprop:
Bad x ((pickpair x) 0) ((pickpair x) 1) ∧ pickpair x ∈ setprod Tx J.
We prove the intermediate
claim Hpa:
pickpair x ∈ setprod Tx J ∧ x ∈ ((pickpair x) 0) ∧ ((pickpair x) 1) ∈ J ∧ ∀j : set, j ∈ J → (((pickpair x) 1),j) ∈ le → ¬ (apply_fun net j ∈ ((pickpair x) 0)).
We prove the intermediate
claim HpaL:
(pickpair x ∈ setprod Tx J ∧ x ∈ ((pickpair x) 0)) ∧ ((pickpair x) 1) ∈ J.
An
exact proof term for the current goal is
(andEL ((pickpair x ∈ setprod Tx J ∧ x ∈ ((pickpair x) 0)) ∧ ((pickpair x) 1) ∈ J) (∀j : set, j ∈ J → (((pickpair x) 1),j) ∈ le → ¬ (apply_fun net j ∈ ((pickpair x) 0))) Hpa).
We prove the intermediate
claim HpaA:
pickpair x ∈ setprod Tx J ∧ x ∈ ((pickpair x) 0).
An
exact proof term for the current goal is
(andEL (pickpair x ∈ setprod Tx J ∧ x ∈ ((pickpair x) 0)) (((pickpair x) 1) ∈ J) HpaL).
We prove the intermediate
claim Hpp:
pickpair x ∈ setprod Tx J.
An
exact proof term for the current goal is
(andEL (pickpair x ∈ setprod Tx J) (x ∈ ((pickpair x) 0)) HpaA).
We prove the intermediate
claim HUx':
((pickpair x) 0) ∈ Tx.
An
exact proof term for the current goal is
(ap0_Sigma Tx (λ_ : set ⇒ J) (pickpair x) Hpp).
We prove the intermediate
claim HxU':
x ∈ ((pickpair x) 0).
An
exact proof term for the current goal is
(andER (pickpair x ∈ setprod Tx J) (x ∈ ((pickpair x) 0)) HpaA).
We prove the intermediate
claim Hj0':
((pickpair x) 1) ∈ J.
An
exact proof term for the current goal is
(andER (pickpair x ∈ setprod Tx J ∧ x ∈ ((pickpair x) 0)) (((pickpair x) 1) ∈ J) HpaL).
We prove the intermediate
claim Htail':
∀j : set, j ∈ J → (((pickpair x) 1),j) ∈ le → ¬ (apply_fun net j ∈ ((pickpair x) 0)).
An
exact proof term for the current goal is
(andER ((pickpair x ∈ setprod Tx J ∧ x ∈ ((pickpair x) 0)) ∧ ((pickpair x) 1) ∈ J) (∀j : set, j ∈ J → (((pickpair x) 1),j) ∈ le → ¬ (apply_fun net j ∈ ((pickpair x) 0))) Hpa).
We prove the intermediate
claim Hbad':
Bad x ((pickpair x) 0) ((pickpair x) 1).
An
exact proof term for the current goal is
(andI (((((pickpair x) 0) ∈ Tx ∧ x ∈ ((pickpair x) 0)) ∧ ((pickpair x) 1) ∈ J)) (∀j : set, j ∈ J → (((pickpair x) 1),j) ∈ le → ¬ (apply_fun net j ∈ ((pickpair x) 0))) (andI (((pickpair x) 0) ∈ Tx ∧ x ∈ ((pickpair x) 0)) (((pickpair x) 1) ∈ J) (andI (((pickpair x) 0) ∈ Tx) (x ∈ ((pickpair x) 0)) HUx' HxU') Hj0') Htail').
An
exact proof term for the current goal is
(andI (Bad x ((pickpair x) 0) ((pickpair x) 1)) (pickpair x ∈ setprod Tx J) Hbad' Hpp).
An
exact proof term for the current goal is
(andEL (Bad x ((pickpair x) 0) ((pickpair x) 1)) (pickpair x ∈ setprod Tx J) Hprop).
Apply andI to the current goal.
Apply andI to the current goal.
Apply andI to the current goal.
An exact proof term for the current goal is HTx.
Let U be given.
Apply PowerI to the current goal.
Let y be given.
We prove the intermediate
claim Hexx:
∃x : set, x ∈ X ∧ U = ((pickpair x) 0).
An
exact proof term for the current goal is
(ReplE X (λx0 : set ⇒ ((pickpair x0) 0)) U HU).
Apply Hexx to the current goal.
Let x be given.
We prove the intermediate
claim HxX:
x ∈ X.
An
exact proof term for the current goal is
(andEL (x ∈ X) (U = ((pickpair x) 0)) HxU).
We prove the intermediate
claim HUeq:
U = ((pickpair x) 0).
An
exact proof term for the current goal is
(andER (x ∈ X) (U = ((pickpair x) 0)) HxU).
We prove the intermediate
claim HUtx:
U ∈ Tx.
rewrite the current goal using HUeq (from left to right).
We prove the intermediate
claim HpbL:
(((pickpair x) 0) ∈ Tx ∧ x ∈ ((pickpair x) 0)) ∧ ((pickpair x) 1) ∈ J.
An
exact proof term for the current goal is
(andEL ((((pickpair x) 0) ∈ Tx ∧ x ∈ ((pickpair x) 0)) ∧ ((pickpair x) 1) ∈ J) (∀j : set, j ∈ J → (((pickpair x) 1),j) ∈ le → ¬ (apply_fun net j ∈ ((pickpair x) 0))) (HpickBad x HxX)).
We prove the intermediate
claim HpbUx:
((pickpair x) 0) ∈ Tx ∧ x ∈ ((pickpair x) 0).
An
exact proof term for the current goal is
(andEL (((pickpair x) 0) ∈ Tx ∧ x ∈ ((pickpair x) 0)) (((pickpair x) 1) ∈ J) HpbL).
An
exact proof term for the current goal is
(andEL (((pickpair x) 0) ∈ Tx) (x ∈ ((pickpair x) 0)) HpbUx).
We prove the intermediate
claim HUpow:
U ∈ 𝒫 X.
An exact proof term for the current goal is (HTsub U HUtx).
An
exact proof term for the current goal is
(PowerE X U HUpow y Hy).
Let y be given.
We prove the intermediate
claim HUy:
y ∈ ((pickpair y) 0).
We prove the intermediate
claim HpbL:
(((pickpair y) 0) ∈ Tx ∧ y ∈ ((pickpair y) 0)) ∧ ((pickpair y) 1) ∈ J.
An
exact proof term for the current goal is
(andEL ((((pickpair y) 0) ∈ Tx ∧ y ∈ ((pickpair y) 0)) ∧ ((pickpair y) 1) ∈ J) (∀j : set, j ∈ J → (((pickpair y) 1),j) ∈ le → ¬ (apply_fun net j ∈ ((pickpair y) 0))) (HpickBad y HyX)).
We prove the intermediate
claim HpbUx:
((pickpair y) 0) ∈ Tx ∧ y ∈ ((pickpair y) 0).
An
exact proof term for the current goal is
(andEL (((pickpair y) 0) ∈ Tx ∧ y ∈ ((pickpair y) 0)) (((pickpair y) 1) ∈ J) HpbL).
An
exact proof term for the current goal is
(andER (((pickpair y) 0) ∈ Tx) (y ∈ ((pickpair y) 0)) HpbUx).
We prove the intermediate
claim HUyFam:
((pickpair y) 0) ∈ Fam.
An
exact proof term for the current goal is
(ReplI X (λx0 : set ⇒ ((pickpair x0) 0)) y HyX).
An
exact proof term for the current goal is
(UnionI Fam y ((pickpair y) 0) HUy HUyFam).
Let U be given.
We prove the intermediate
claim Hexx:
∃x : set, x ∈ X ∧ U = ((pickpair x) 0).
An
exact proof term for the current goal is
(ReplE X (λx0 : set ⇒ ((pickpair x0) 0)) U HU).
Apply Hexx to the current goal.
Let x be given.
We prove the intermediate
claim HxX:
x ∈ X.
An
exact proof term for the current goal is
(andEL (x ∈ X) (U = ((pickpair x) 0)) HxU).
We prove the intermediate
claim HUeq:
U = ((pickpair x) 0).
An
exact proof term for the current goal is
(andER (x ∈ X) (U = ((pickpair x) 0)) HxU).
rewrite the current goal using HUeq (from left to right).
We prove the intermediate
claim HpbL:
(((pickpair x) 0) ∈ Tx ∧ x ∈ ((pickpair x) 0)) ∧ ((pickpair x) 1) ∈ J.
An
exact proof term for the current goal is
(andEL ((((pickpair x) 0) ∈ Tx ∧ x ∈ ((pickpair x) 0)) ∧ ((pickpair x) 1) ∈ J) (∀j : set, j ∈ J → (((pickpair x) 1),j) ∈ le → ¬ (apply_fun net j ∈ ((pickpair x) 0))) (HpickBad x HxX)).
We prove the intermediate
claim HpbUx:
((pickpair x) 0) ∈ Tx ∧ x ∈ ((pickpair x) 0).
An
exact proof term for the current goal is
(andEL (((pickpair x) 0) ∈ Tx ∧ x ∈ ((pickpair x) 0)) (((pickpair x) 1) ∈ J) HpbL).
An
exact proof term for the current goal is
(andEL (((pickpair x) 0) ∈ Tx) (x ∈ ((pickpair x) 0)) HpbUx).
Apply Hfin to the current goal.
Let G be given.
We prove the intermediate
claim HGleft:
G ⊆ Fam ∧ finite G.
An
exact proof term for the current goal is
(andEL (G ⊆ Fam ∧ finite G) (X ⊆ ⋃ G) HGpack).
We prove the intermediate
claim HGsub:
G ⊆ Fam.
An
exact proof term for the current goal is
(andEL (G ⊆ Fam) (finite G) HGleft).
We prove the intermediate
claim HGfin:
finite G.
An
exact proof term for the current goal is
(andER (G ⊆ Fam) (finite G) HGleft).
We prove the intermediate
claim HGcov:
X ⊆ ⋃ G.
An
exact proof term for the current goal is
(andER (G ⊆ Fam ∧ finite G) (X ⊆ ⋃ G) HGpack).
We prove the intermediate
claim Hrefl:
∀a : set, a ∈ J → (a,a) ∈ le.
We prove the intermediate
claim Htrans:
∀a b c : set, a ∈ J → b ∈ J → c ∈ J → (a,b) ∈ le → (b,c) ∈ le → (a,c) ∈ le.
We prove the intermediate
claim Hpickpair_prop:
∀x : set, x ∈ X → pickpair x ∈ setprod Tx J ∧ x ∈ ((pickpair x) 0) ∧ ((pickpair x) 1) ∈ J ∧ ∀j : set, j ∈ J → (((pickpair x) 1),j) ∈ le → ¬ (apply_fun net j ∈ ((pickpair x) 0)).
Let x be given.
We prove the intermediate
claim HexUJ:
∃U j0 : set, Bad x U j0.
An exact proof term for the current goal is (HexBad x HxX).
Apply HexUJ to the current goal.
Let U be given.
Apply Hexj0 to the current goal.
Let j0 be given.
Assume Hbad: Bad x U j0.
We prove the intermediate
claim Hbadleft:
(U ∈ Tx ∧ x ∈ U) ∧ j0 ∈ J.
An
exact proof term for the current goal is
(andEL ((U ∈ Tx ∧ x ∈ U) ∧ j0 ∈ J) (∀j : set, j ∈ J → (j0,j) ∈ le → ¬ (apply_fun net j ∈ U)) Hbad).
We prove the intermediate
claim HbadUx:
U ∈ Tx ∧ x ∈ U.
An
exact proof term for the current goal is
(andEL (U ∈ Tx ∧ x ∈ U) (j0 ∈ J) Hbadleft).
We prove the intermediate
claim HUTx:
U ∈ Tx.
An
exact proof term for the current goal is
(andEL (U ∈ Tx) (x ∈ U) HbadUx).
We prove the intermediate
claim HxU:
x ∈ U.
An
exact proof term for the current goal is
(andER (U ∈ Tx) (x ∈ U) HbadUx).
We prove the intermediate
claim Hj0J:
j0 ∈ J.
An
exact proof term for the current goal is
(andER (U ∈ Tx ∧ x ∈ U) (j0 ∈ J) Hbadleft).
We prove the intermediate
claim Htail:
∀j : set, j ∈ J → (j0,j) ∈ le → ¬ (apply_fun net j ∈ U).
An
exact proof term for the current goal is
(andER ((U ∈ Tx ∧ x ∈ U) ∧ j0 ∈ J) (∀j : set, j ∈ J → (j0,j) ∈ le → ¬ (apply_fun net j ∈ U)) Hbad).
We prove the intermediate
claim Hp:
(((U,j0) ∈ setprod Tx J ∧ x ∈ ((U,j0) 0)) ∧ ((U,j0) 1) ∈ J) ∧ ∀j : set, j ∈ J → (((U,j0) 1),j) ∈ le → ¬ (apply_fun net j ∈ ((U,j0) 0)).
Apply andI to the current goal.
Apply andI to the current goal.
Apply andI to the current goal.
rewrite the current goal using
(tuple_2_0_eq U j0) (from left to right).
An exact proof term for the current goal is HxU.
rewrite the current goal using
(tuple_2_1_eq U j0) (from left to right).
An exact proof term for the current goal is Hj0J.
Let j be given.
We prove the intermediate
claim Hj0j':
(j0,j) ∈ le.
rewrite the current goal using
(tuple_2_1_eq U j0) (from right to left).
An exact proof term for the current goal is Hj0j.
rewrite the current goal using
(tuple_2_0_eq U j0) (from left to right).
An exact proof term for the current goal is (Htail j HjJ Hj0j').
Set P to be the term
(λG0 : set ⇒ G0 ⊆ G → ∃j0 : set, j0 ∈ J ∧ ∀U : set, U ∈ G0 → ∀j : set, j ∈ J → (j0,j) ∈ le → ¬ (apply_fun net j ∈ U)).
We prove the intermediate
claim HP0:
P Empty.
We prove the intermediate
claim HJne:
J ≠ Empty.
Let j0 be given.
We use j0 to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is Hj0J.
Let U be given.
Apply FalseE to the current goal.
An
exact proof term for the current goal is
((EmptyE U) HU).
We prove the intermediate
claim HPstep:
∀X0 y : set, finite X0 → y ∉ X0 → P X0 → P (X0 ∪ {y}).
Let X0 and y be given.
Assume IH: P X0.
We prove the intermediate
claim HX0sub:
X0 ⊆ G.
Let U be given.
We prove the intermediate
claim HUb:
U ∈ (X0 ∪ {y}).
An
exact proof term for the current goal is
(binunionI1 X0 {y} U HU).
An exact proof term for the current goal is (HsubAll U HUb).
We prove the intermediate
claim HyG:
y ∈ G.
We prove the intermediate
claim Hyin:
y ∈ (X0 ∪ {y}).
An exact proof term for the current goal is (HsubAll y Hyin).
Apply (IH HX0sub) to the current goal.
Let jX be given.
We prove the intermediate
claim HjXJ:
jX ∈ J.
An
exact proof term for the current goal is
(andEL (jX ∈ J) (∀U : set, U ∈ X0 → ∀j : set, j ∈ J → (jX,j) ∈ le → ¬ (apply_fun net j ∈ U)) HjXpack).
We prove the intermediate
claim HtailX0:
∀U : set, U ∈ X0 → ∀j : set, j ∈ J → (jX,j) ∈ le → ¬ (apply_fun net j ∈ U).
An
exact proof term for the current goal is
(andER (jX ∈ J) (∀U : set, U ∈ X0 → ∀j : set, j ∈ J → (jX,j) ∈ le → ¬ (apply_fun net j ∈ U)) HjXpack).
We prove the intermediate
claim HyFam:
y ∈ Fam.
An exact proof term for the current goal is (HGsub y HyG).
We prove the intermediate
claim Hexx:
∃x : set, x ∈ X ∧ y = ((pickpair x) 0).
An
exact proof term for the current goal is
(ReplE X (λx0 : set ⇒ ((pickpair x0) 0)) y HyFam).
Apply Hexx to the current goal.
Let xY be given.
We prove the intermediate
claim HxYin:
xY ∈ X.
An
exact proof term for the current goal is
(andEL (xY ∈ X) (y = ((pickpair xY) 0)) HxY).
We prove the intermediate
claim HyEq:
y = ((pickpair xY) 0).
An
exact proof term for the current goal is
(andER (xY ∈ X) (y = ((pickpair xY) 0)) HxY).
Set jY to be the term
((pickpair xY) 1).
We prove the intermediate
claim HjYJ:
jY ∈ J.
We prove the intermediate
claim Hpa:
pickpair xY ∈ setprod Tx J ∧ xY ∈ ((pickpair xY) 0) ∧ jY ∈ J ∧ ∀j : set, j ∈ J → (jY,j) ∈ le → ¬ (apply_fun net j ∈ ((pickpair xY) 0)).
An exact proof term for the current goal is (Hpickpair_prop xY HxYin).
We prove the intermediate
claim HpaL:
(pickpair xY ∈ setprod Tx J ∧ xY ∈ ((pickpair xY) 0)) ∧ jY ∈ J.
An
exact proof term for the current goal is
(andEL ((pickpair xY ∈ setprod Tx J ∧ xY ∈ ((pickpair xY) 0)) ∧ jY ∈ J) (∀j : set, j ∈ J → (jY,j) ∈ le → ¬ (apply_fun net j ∈ ((pickpair xY) 0))) Hpa).
An
exact proof term for the current goal is
(andER (pickpair xY ∈ setprod Tx J ∧ xY ∈ ((pickpair xY) 0)) (jY ∈ J) HpaL).
We prove the intermediate
claim HtailY:
∀j : set, j ∈ J → (jY,j) ∈ le → ¬ (apply_fun net j ∈ y).
Let j be given.
rewrite the current goal using HyEq (from left to right).
We prove the intermediate
claim Hpa:
pickpair xY ∈ setprod Tx J ∧ xY ∈ ((pickpair xY) 0) ∧ jY ∈ J ∧ ∀j0 : set, j0 ∈ J → (jY,j0) ∈ le → ¬ (apply_fun net j0 ∈ ((pickpair xY) 0)).
An exact proof term for the current goal is (Hpickpair_prop xY HxYin).
An
exact proof term for the current goal is
((andER ((pickpair xY ∈ setprod Tx J ∧ xY ∈ ((pickpair xY) 0)) ∧ jY ∈ J) (∀j0 : set, j0 ∈ J → (jY,j0) ∈ le → ¬ (apply_fun net j0 ∈ ((pickpair xY) 0))) Hpa) j HjJ HjYj).
We prove the intermediate
claim Hexub:
∃j0 : set, j0 ∈ J ∧ (jX,j0) ∈ le ∧ (jY,j0) ∈ le.
Apply Hexub to the current goal.
Let j0 be given.
We prove the intermediate
claim Hj0left:
j0 ∈ J ∧ (jX,j0) ∈ le.
An
exact proof term for the current goal is
(andEL (j0 ∈ J ∧ (jX,j0) ∈ le) ((jY,j0) ∈ le) Hj0pack).
We prove the intermediate
claim Hj0J:
j0 ∈ J.
An
exact proof term for the current goal is
(andEL (j0 ∈ J) ((jX,j0) ∈ le) Hj0left).
We prove the intermediate
claim HjXj0:
(jX,j0) ∈ le.
An
exact proof term for the current goal is
(andER (j0 ∈ J) ((jX,j0) ∈ le) Hj0left).
We prove the intermediate
claim HjYj0:
(jY,j0) ∈ le.
An
exact proof term for the current goal is
(andER (j0 ∈ J ∧ (jX,j0) ∈ le) ((jY,j0) ∈ le) Hj0pack).
We use j0 to witness the existential quantifier.
Apply andI to the current goal.
An exact proof term for the current goal is Hj0J.
Let U be given.
We will
prove ∀j : set, j ∈ J → (j0,j) ∈ le → ¬ (apply_fun net j ∈ U).
Let j be given.
We prove the intermediate
claim HjXj:
(jX,j) ∈ le.
An exact proof term for the current goal is (Htrans jX j0 j HjXJ Hj0J HjJ HjXj0 Hj0j).
An exact proof term for the current goal is (HtailX0 U HUx0 j HjJ HjXj).
We prove the intermediate
claim HUeq:
U = y.
An
exact proof term for the current goal is
(SingE y U HUy).
rewrite the current goal using HUeq (from left to right).
Let j be given.
We prove the intermediate
claim HjYj:
(jY,j) ∈ le.
An exact proof term for the current goal is (Htrans jY j0 j HjYJ Hj0J HjJ HjYj0 Hj0j).
An exact proof term for the current goal is (HtailY j HjJ HjYj).
An exact proof term for the current goal is HU.
We prove the intermediate claim HPG: P G.
An
exact proof term for the current goal is
(finite_ind P HP0 HPstep G HGfin).
We prove the intermediate
claim HGsubG:
G ⊆ G.
Let U be given.
An exact proof term for the current goal is HU.
Apply (HPG HGsubG) to the current goal.
Let j0 be given.
We prove the intermediate
claim Hj0J:
j0 ∈ J.
An
exact proof term for the current goal is
(andEL (j0 ∈ J) (∀U : set, U ∈ G → ∀j : set, j ∈ J → (j0,j) ∈ le → ¬ (apply_fun net j ∈ U)) Hj0pack).
We prove the intermediate
claim HavoidG:
∀U : set, U ∈ G → ∀j : set, j ∈ J → (j0,j) ∈ le → ¬ (apply_fun net j ∈ U).
An
exact proof term for the current goal is
(andER (j0 ∈ J) (∀U : set, U ∈ G → ∀j : set, j ∈ J → (j0,j) ∈ le → ¬ (apply_fun net j ∈ U)) Hj0pack).
We prove the intermediate
claim HnotUnion:
¬ (apply_fun net j0 ∈ ⋃ G).
Let U be given.
We prove the intermediate
claim HUin:
U ∈ G.
An
exact proof term for the current goal is
(andER (apply_fun net j0 ∈ U) (U ∈ G) HU).
We prove the intermediate
claim Hrefl0:
(j0,j0) ∈ le.
An exact proof term for the current goal is (Hrefl j0 Hj0J).
An
exact proof term for the current goal is
((HavoidG U HUin j0 Hj0J Hrefl0) (andEL (apply_fun net j0 ∈ U) (U ∈ G) HU)).
We prove the intermediate
claim Hnetj0X:
apply_fun net j0 ∈ X.
An
exact proof term for the current goal is
(HnotUnion (HGcov (apply_fun net j0) Hnetj0X)).