Let X and Tx be given.
Assume Hcomp: compact_space X Tx.
Let net be given.
Assume Hnet: net_in_space X net.
We will prove ∃sub x : set, subnet_of net sub net_converges X Tx sub x.
We prove the intermediate claim Hexacc: ∃x0 : set, accumulation_point_of_net X Tx net x0.
An exact proof term for the current goal is (compact_space_net_has_accumulation_point X Tx net Hcomp Hnet).
Apply Hexacc to the current goal.
Let x0 be given.
Assume Hacc: accumulation_point_of_net X Tx net x0.
We prove the intermediate claim Hexsub: ∃sub : set, subnet_of net sub net_converges X Tx sub x0.
An exact proof term for the current goal is (subnet_converges_to_accumulation X Tx net x0 Hacc).
Apply Hexsub to the current goal.
Let sub be given.
Assume Hsubconv: subnet_of net sub net_converges X Tx sub x0.
We use sub to witness the existential quantifier.
We use x0 to witness the existential quantifier.
An exact proof term for the current goal is Hsubconv.