rewrite the current goal using HdefCl (from left to right).
Apply (SepI Y (λz0 : set ⇒ ∀V : set, V ∈ Ty → z0 ∈ V → V ∩ open_ball Y d y r ≠ Empty) fx HfxY) to the current goal.
Let V be given.
We prove the intermediate
claim HpreVTx:
preimage_of X f V ∈ Tx.
We prove the intermediate
claim HxPreV:
x ∈ preimage_of X f V.
An
exact proof term for the current goal is
(SepI X (λu : set ⇒ apply_fun f u ∈ V) x HxX HfxV).
An
exact proof term for the current goal is
(Hclx (preimage_of X f V) HpreVTx HxPreV).
Apply Hext to the current goal.
Let t be given.
We prove the intermediate
claim HtPreV:
t ∈ preimage_of X f V.
We prove the intermediate
claim HtX:
t ∈ X.
An
exact proof term for the current goal is
(SepE1 X (λu : set ⇒ apply_fun f u ∈ V) t HtPreV).
We prove the intermediate
claim HftV:
apply_fun f t ∈ V.
An
exact proof term for the current goal is
(SepE2 X (λu : set ⇒ apply_fun f u ∈ V) t HtPreV).
We prove the intermediate
claim HftY:
apply_fun f t ∈ Y.
An exact proof term for the current goal is (Hfun t HtX).